source: branches/Release12/src/SDMath.cc @ 798

Last change on this file since 798 was 798, checked in by phi196, 18 years ago

Added swap_pol & invert_phase

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 65.9 KB
RevLine 
[2]1//#---------------------------------------------------------------------------
2//# SDMath.cc: A collection of single dish mathematical operations
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2004
[125]5//# ATNF
[2]6//#
7//# This program is free software; you can redistribute it and/or modify it
8//# under the terms of the GNU General Public License as published by the Free
9//# Software Foundation; either version 2 of the License, or (at your option)
10//# any later version.
11//#
12//# This program is distributed in the hope that it will be useful, but
13//# WITHOUT ANY WARRANTY; without even the implied warranty of
14//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
15//# Public License for more details.
16//#
17//# You should have received a copy of the GNU General Public License along
18//# with this program; if not, write to the Free Software Foundation, Inc.,
19//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
20//#
21//# Correspondence concerning this software should be addressed as follows:
22//#        Internet email: Malte.Marquarding@csiro.au
23//#        Postal address: Malte Marquarding,
24//#                        Australia Telescope National Facility,
25//#                        P.O. Box 76,
26//#                        Epping, NSW, 2121,
27//#                        AUSTRALIA
28//#
29//# $Id:
30//#---------------------------------------------------------------------------
[38]31#include <vector>
32
[716]33
[81]34#include <casa/aips.h>
[330]35#include <casa/iostream.h>
[716]36#include <casa/sstream.h>
[330]37#include <casa/iomanip.h>
[81]38#include <casa/BasicSL/String.h>
39#include <casa/Arrays/IPosition.h>
40#include <casa/Arrays/Array.h>
[130]41#include <casa/Arrays/ArrayIter.h>
42#include <casa/Arrays/VectorIter.h>
[81]43#include <casa/Arrays/ArrayMath.h>
44#include <casa/Arrays/ArrayLogical.h>
45#include <casa/Arrays/MaskedArray.h>
46#include <casa/Arrays/MaskArrMath.h>
47#include <casa/Arrays/MaskArrLogi.h>
[330]48#include <casa/Arrays/Matrix.h>
[234]49#include <casa/BasicMath/Math.h>
[262]50#include <casa/Exceptions.h>
51#include <casa/Quanta/Quantum.h>
52#include <casa/Quanta/Unit.h>
53#include <casa/Quanta/MVEpoch.h>
[272]54#include <casa/Quanta/MVTime.h>
[177]55#include <casa/Utilities/Assert.h>
[2]56
[262]57#include <coordinates/Coordinates/SpectralCoordinate.h>
58#include <coordinates/Coordinates/CoordinateSystem.h>
59#include <coordinates/Coordinates/CoordinateUtil.h>
[309]60#include <coordinates/Coordinates/FrequencyAligner.h>
[262]61
62#include <lattices/Lattices/LatticeUtilities.h>
63#include <lattices/Lattices/RebinLattice.h>
64
65#include <measures/Measures/MEpoch.h>
66#include <measures/Measures/MDirection.h>
67#include <measures/Measures/MPosition.h>
68
[177]69#include <scimath/Mathematics/VectorKernel.h>
70#include <scimath/Mathematics/Convolver.h>
[227]71#include <scimath/Mathematics/InterpolateArray1D.h>
[234]72#include <scimath/Functionals/Polynomial.h>
[177]73
[81]74#include <tables/Tables/Table.h>
75#include <tables/Tables/ScalarColumn.h>
76#include <tables/Tables/ArrayColumn.h>
[227]77#include <tables/Tables/ReadAsciiTable.h>
[2]78
[38]79#include "MathUtils.h"
[232]80#include "SDDefs.h"
[354]81#include "SDAttr.h"
[2]82#include "SDContainer.h"
83#include "SDMemTable.h"
84
85#include "SDMath.h"
[457]86#include "SDPol.h"
[2]87
[125]88using namespace casa;
[83]89using namespace asap;
[2]90
[170]91
92SDMath::SDMath()
[716]93{
94}
[170]95
[185]96SDMath::SDMath(const SDMath& other)
[170]97{
98
99// No state
100
101}
102
[779]103SDMath& SDMath::operator=(const SDMath& other)
[170]104{
105  if (this != &other) {
106// No state
107  }
108  return *this;
109}
110
[183]111SDMath::~SDMath()
112{;}
[170]113
[183]114
[779]115SDMemTable* SDMath::frequencyAlignment(const SDMemTable& in,
116                                       const String& refTime,
117                                       const String& method,
118                                       Bool perFreqID)
[262]119{
[701]120  // Get frame info from Table
[262]121   std::vector<std::string> info = in.getCoordInfo();
[294]122
[701]123   // Parse frequency system
[309]124   String systemStr(info[1]);
125   String baseSystemStr(info[3]);
126   if (baseSystemStr==systemStr) {
[701]127     throw(AipsError("You have not set a frequency frame different from the initial - use function set_freqframe"));
[262]128   }
[701]129
[309]130   MFrequency::Types freqSystem;
131   MFrequency::getType(freqSystem, systemStr);
[294]132
[488]133   return frequencyAlign(in, freqSystem, refTime, method, perFreqID);
[267]134}
[262]135
136
137
[779]138CountedPtr<SDMemTable>
[701]139SDMath::average(const std::vector<CountedPtr<SDMemTable> >& in,
[779]140                const Vector<Bool>& mask, Bool scanAv,
141                const String& weightStr, Bool alignFreq)
[144]142// Weighted averaging of spectra from one or more Tables.
[130]143{
[779]144  // Convert weight type
[163]145  WeightType wtType = NONE;
[518]146  convertWeightString(wtType, weightStr, True);
[163]147
[701]148  // Create output Table by cloning from the first table
[144]149  SDMemTable* pTabOut = new SDMemTable(*in[0],True);
[653]150  if (in.size() > 1) {
151    for (uInt i=1; i < in.size(); ++i) {
[488]152      pTabOut->appendToHistoryTable(in[i]->getHistoryTable());
153    }
154  }
[701]155  // Setup
[144]156  IPosition shp = in[0]->rowAsMaskedArray(0).shape();      // Must not change
157  Array<Float> arr(shp);
158  Array<Bool> barr(shp);
[221]159  const Bool useMask = (mask.nelements() == shp(asap::ChanAxis));
[130]160
[701]161  // Columns from Tables
[144]162  ROArrayColumn<Float> tSysCol;
163  ROScalarColumn<Double> mjdCol;
164  ROScalarColumn<String> srcNameCol;
165  ROScalarColumn<Double> intCol;
166  ROArrayColumn<uInt> fqIDCol;
[410]167  ROScalarColumn<Int> scanIDCol;
[130]168
[701]169  // Create accumulation MaskedArray. We accumulate for each
170  // channel,if,pol,beam Note that the mask of the accumulation array
171  // will ALWAYS remain ALL True.  The MA is only used so that when
172  // data which is masked Bad is added to it, that data does not
173  // contribute.
[144]174
175  Array<Float> zero(shp);
176  zero=0.0;
177  Array<Bool> good(shp);
178  good = True;
179  MaskedArray<Float> sum(zero,good);
180
[701]181  // Counter arrays
[144]182  Array<Float> nPts(shp);             // Number of points
183  nPts = 0.0;
184  Array<Float> nInc(shp);             // Increment
185  nInc = 1.0;
186
[701]187  // Create accumulation Array for variance. We accumulate for each
188  // if,pol,beam, but average over channel.  So we need a shape with
189  // one less axis dropping channels.
[144]190  const uInt nAxesSub = shp.nelements() - 1;
191  IPosition shp2(nAxesSub);
192  for (uInt i=0,j=0; i<(nAxesSub+1); i++) {
[221]193     if (i!=asap::ChanAxis) {
[144]194       shp2(j) = shp(i);
195       j++;
196     }
[2]197  }
[144]198  Array<Float> sumSq(shp2);
199  sumSq = 0.0;
200  IPosition pos2(nAxesSub,0);                        // For indexing
[130]201
[701]202  // Time-related accumulators
[144]203  Double time;
204  Double timeSum = 0.0;
205  Double intSum = 0.0;
206  Double interval = 0.0;
[130]207
[701]208  // To get the right shape for the Tsys accumulator we need to access
209  // a column from the first table.  The shape of this array must not
210  // change.  Note however that since the TSysSqSum array is used in a
211  // normalization process, and that I ignore the channel axis
212  // replication of values for now, it loses a dimension
[130]213
[518]214  Array<Float> tSysSum, tSysSqSum;
[144]215  {
216    const Table& tabIn = in[0]->table();
217    tSysCol.attach(tabIn,"TSYS");
218    tSysSum.resize(tSysCol.shape(0));
[518]219    tSysSqSum.resize(shp2);
[144]220  }
[701]221  tSysSum = 0.0;
[518]222  tSysSqSum = 0.0;
[144]223  Array<Float> tSys;
224
[701]225  // Scan and row tracking
[144]226  Int oldScanID = 0;
227  Int outScanID = 0;
228  Int scanID = 0;
229  Int rowStart = 0;
230  Int nAccum = 0;
231  Int tableStart = 0;
232
[701]233  // Source and FreqID
[144]234  String sourceName, oldSourceName, sourceNameStart;
235  Vector<uInt> freqID, freqIDStart, oldFreqID;
236
[701]237  // Loop over tables
[144]238  Float fac = 1.0;
[653]239  const uInt nTables = in.size();
[144]240  for (uInt iTab=0; iTab<nTables; iTab++) {
241
[701]242    // Should check that the frequency tables don't change if doing
243    // FreqAlignment
[779]244
[701]245    // Attach columns to Table
[144]246     const Table& tabIn = in[iTab]->table();
247     tSysCol.attach(tabIn, "TSYS");
248     mjdCol.attach(tabIn, "TIME");
249     srcNameCol.attach(tabIn, "SRCNAME");
250     intCol.attach(tabIn, "INTERVAL");
251     fqIDCol.attach(tabIn, "FREQID");
[410]252     scanIDCol.attach(tabIn, "SCANID");
[144]253
[701]254     // Loop over rows in Table
[144]255     const uInt nRows = in[iTab]->nRow();
256     for (uInt iRow=0; iRow<nRows; iRow++) {
[701]257       // Check conformance
[144]258        IPosition shp2 = in[iTab]->rowAsMaskedArray(iRow).shape();
259        if (!shp.isEqual(shp2)) {
[779]260          delete pTabOut;
[144]261           throw (AipsError("Shapes for all rows must be the same"));
262        }
263
[779]264        // If we are not doing scan averages, make checks for source
265        // and frequency setup and warn if averaging across them
[410]266        scanIDCol.getScalar(iRow, scanID);
[144]267
[779]268        // Get quantities from columns
[144]269        srcNameCol.getScalar(iRow, sourceName);
270        mjdCol.get(iRow, time);
271        tSysCol.get(iRow, tSys);
272        intCol.get(iRow, interval);
273        fqIDCol.get(iRow, freqID);
274
[779]275        // Initialize first source and freqID
[144]276        if (iRow==0 && iTab==0) {
277          sourceNameStart = sourceName;
278          freqIDStart = freqID;
279        }
280
[779]281        // If we are doing scan averages, see if we are at the end of
282        // an accumulation period (scan).  We must check soutce names
283        // too, since we might have two tables with one scan each but
284        // different source names; we shouldn't average different
285        // sources together
[144]286        if (scanAv && ( (scanID != oldScanID)  ||
287                        (iRow==0 && iTab>0 && sourceName!=oldSourceName))) {
288
[779]289          // Normalize data in 'sum' accumulation array according to
290          // weighting scheme
291           normalize(sum, sumSq, tSysSqSum, nPts, intSum, wtType,
292                     asap::ChanAxis, nAxesSub);
[144]293
[779]294           // Get ScanContainer for the first row of this averaged Scan
[410]295           SDContainer scOut = in[iTab]->getSDContainer(rowStart);
296
[779]297           // Fill scan container. The source and freqID come from the
298           // first row of the first table that went into this average
299           // ( should be the same for all rows in the scan average)
[144]300
301           Float nR(nAccum);
[410]302           fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
[779]303                   timeSum/nR, intSum, sourceNameStart, freqIDStart);
304
305           // Write container out to Table
[410]306           pTabOut->putSDContainer(scOut);
[779]307
308           // Reset accumulators
[144]309           sum = 0.0;
310           sumSq = 0.0;
311           nAccum = 0;
[701]312
[144]313           tSysSum =0.0;
[518]314           tSysSqSum =0.0;
[144]315           timeSum = 0.0;
316           intSum = 0.0;
[779]317           nPts = 0.0;
[144]318
[779]319           // Increment
[144]320           rowStart = iRow;              // First row for next accumulation
321           tableStart = iTab;            // First table for next accumulation
[701]322           sourceNameStart = sourceName; // First source name for next
[779]323                                         // accumulation
[144]324           freqIDStart = freqID;         // First FreqID for next accumulation
[701]325
[144]326           oldScanID = scanID;
[701]327           outScanID += 1;               // Scan ID for next
[779]328                                         // accumulation period
[227]329        }
[144]330
[779]331        // Accumulate
332        accumulate(timeSum, intSum, nAccum, sum, sumSq, nPts,
333                   tSysSum, tSysSqSum, tSys,
334                   nInc, mask, time, interval, in, iTab, iRow, asap::ChanAxis,
[518]335                   nAxesSub, useMask, wtType);
[779]336        oldSourceName = sourceName;
337        oldFreqID = freqID;
[184]338     }
[144]339  }
340
[701]341  // OK at this point we have accumulation data which is either
342  //   - accumulated from all tables into one row
343  // or
344  //   - accumulated from the last scan average
345  //
346  // Normalize data in 'sum' accumulation array according to weighting
347  // scheme
[410]348
[779]349  normalize(sum, sumSq, tSysSqSum, nPts, intSum, wtType,
350            asap::ChanAxis, nAxesSub);
[144]351
[701]352  // Create and fill container.  The container we clone will be from
353  // the last Table and the first row that went into the current
354  // accumulation.  It probably doesn't matter that much really...
[144]355  Float nR(nAccum);
[410]356  SDContainer scOut = in[tableStart]->getSDContainer(rowStart);
357  fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
[779]358          timeSum/nR, intSum, sourceNameStart, freqIDStart);
[410]359  pTabOut->putSDContainer(scOut);
[304]360  pTabOut->resetCursor();
[701]361
[144]362  return CountedPtr<SDMemTable>(pTabOut);
[2]363}
[9]364
[144]365
366
[779]367CountedPtr<SDMemTable>
[701]368SDMath::binaryOperate(const CountedPtr<SDMemTable>& left,
[779]369                      const CountedPtr<SDMemTable>& right,
370                      const String& op, Bool preserve, Bool doTSys)
[185]371{
[85]372
[701]373  // Check operator
[234]374  String op2(op);
375  op2.upcase();
376  uInt what = 0;
377  if (op2=="ADD") {
378     what = 0;
379  } else if (op2=="SUB") {
380     what = 1;
381  } else if (op2=="MUL") {
382     what = 2;
383  } else if (op2=="DIV") {
384     what = 3;
[248]385  } else if (op2=="QUOTIENT") {
386     what = 4;
[294]387     doTSys = True;
[234]388  } else {
[248]389    throw( AipsError("Unrecognized operation"));
[234]390  }
391
[701]392  // Check rows
[248]393  const uInt nRowLeft = left->nRow();
394  const uInt nRowRight = right->nRow();
[701]395  Bool ok = (nRowRight==1 && nRowLeft>0) ||
396            (nRowRight>=1 && nRowLeft==nRowRight);
[248]397  if (!ok) {
398     throw (AipsError("The right Scan Table can have one row or the same number of rows as the left Scan Table"));
[234]399  }
400
[779]401  // Input Tables
[234]402  const Table& tLeft = left->table();
403  const Table& tRight = right->table();
[248]404
[701]405  // TSys columns
[294]406  ROArrayColumn<Float> tSysLeftCol, tSysRightCol;
407  if (doTSys) {
[701]408    tSysLeftCol.attach(tLeft, "TSYS");
409    tSysRightCol.attach(tRight, "TSYS");
[294]410  }
[234]411
[701]412  // First row for right
[248]413  Array<Float> tSysLeftArr, tSysRightArr;
[294]414  if (doTSys) tSysRightCol.get(0, tSysRightArr);
[779]415  MaskedArray<Float>* pMRight =
[701]416    new MaskedArray<Float>(right->rowAsMaskedArray(0));
417
[248]418  IPosition shpRight = pMRight->shape();
419
[701]420  // Output Table cloned from left
[234]421  SDMemTable* pTabOut = new SDMemTable(*left, True);
[488]422  pTabOut->appendToHistoryTable(right->getHistoryTable());
[234]423
[701]424  // Loop over rows
[248]425  for (uInt i=0; i<nRowLeft; i++) {
[779]426
427    // Get data
[701]428    MaskedArray<Float> mLeft(left->rowAsMaskedArray(i));
429    IPosition shpLeft = mLeft.shape();
430    if (doTSys) tSysLeftCol.get(i, tSysLeftArr);
[779]431
[701]432    if (nRowRight>1) {
433      delete pMRight;
434      pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(i));
435      shpRight = pMRight->shape();
436      if (doTSys) tSysRightCol.get(i, tSysRightArr);
437    }
[234]438
[701]439    if (!shpRight.isEqual(shpLeft)) {
440      delete pTabOut;
441      delete pMRight;
442      throw(AipsError("left and right scan tables are not conformant"));
443    }
444    if (doTSys) {
445      if (!tSysRightArr.shape().isEqual(tSysRightArr.shape())) {
[779]446        delete pTabOut;
447        delete pMRight;
448        throw(AipsError("left and right Tsys data are not conformant"));
[701]449      }
450      if (!shpRight.isEqual(tSysRightArr.shape())) {
[779]451        delete pTabOut;
452        delete pMRight;
453        throw(AipsError("left and right scan tables are not conformant"));
[701]454      }
455    }
[248]456
[701]457    // Make container
[234]458     SDContainer sc = left->getSDContainer(i);
459
[701]460     // Operate on data and TSys
[779]461     if (what==0) {
[248]462        MaskedArray<Float> tmp = mLeft + *pMRight;
[234]463        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]464        if (doTSys) sc.putTsys(tSysLeftArr+tSysRightArr);
[234]465     } else if (what==1) {
[248]466        MaskedArray<Float> tmp = mLeft - *pMRight;
[234]467        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]468        if (doTSys) sc.putTsys(tSysLeftArr-tSysRightArr);
[234]469     } else if (what==2) {
[248]470        MaskedArray<Float> tmp = mLeft * *pMRight;
[234]471        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]472        if (doTSys) sc.putTsys(tSysLeftArr*tSysRightArr);
[234]473     } else if (what==3) {
[248]474        MaskedArray<Float> tmp = mLeft / *pMRight;
[234]475        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[294]476        if (doTSys) sc.putTsys(tSysLeftArr/tSysRightArr);
[248]477     } else if (what==4) {
[779]478       if (preserve) {
479         MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) -
480           tSysRightArr;
481         putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[488]482       } else {
[779]483         MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) -
484           tSysLeftArr;
485         putDataInSDC(sc, tmp.getArray(), tmp.getMask());
[488]486       }
487       sc.putTsys(tSysRightArr);
[234]488     }
489
[701]490     // Put new row in output Table
[171]491     pTabOut->putSDContainer(sc);
[130]492  }
[248]493  if (pMRight) delete pMRight;
[304]494  pTabOut->resetCursor();
[779]495
[171]496  return CountedPtr<SDMemTable>(pTabOut);
[9]497}
[48]498
[146]499
[185]500std::vector<float> SDMath::statistic(const CountedPtr<SDMemTable>& in,
[779]501                                     const Vector<Bool>& mask,
502                                     const String& which, Int row) const
[130]503//
504// Perhaps iteration over pol/beam/if should be in here
505// and inside the nrow iteration ?
506//
507{
508  const uInt nRow = in->nRow();
509
510// Specify cursor location
511
[152]512  IPosition start, end;
[434]513  Bool doAll = False;
[716]514  setCursorSlice(start, end, doAll, *in);
[130]515
516// Loop over rows
517
[234]518  const uInt nEl = mask.nelements();
519  uInt iStart = 0;
520  uInt iEnd = in->nRow()-1;
[779]521//
[234]522  if (row>=0) {
523     iStart = row;
524     iEnd = row;
525  }
526//
527  std::vector<float> result(iEnd-iStart+1);
528  for (uInt ii=iStart; ii <= iEnd; ++ii) {
[130]529
530// Get row and deconstruct
531
[434]532     MaskedArray<Float> dataIn = (in->rowAsMaskedArray(ii))(start,end);
533     Array<Float> v = dataIn.getArray().nonDegenerate();
534     Array<Bool>  m = dataIn.getMask().nonDegenerate();
[130]535
536// Access desired piece of data
537
[434]538//     Array<Float> v((arr(start,end)).nonDegenerate());
539//     Array<Bool> m((barr(start,end)).nonDegenerate());
[130]540
541// Apply OTF mask
542
543     MaskedArray<Float> tmp;
544     if (m.nelements()==nEl) {
[234]545       tmp.setData(v,m&&mask);
[130]546     } else {
547       tmp.setData(v,m);
548     }
549
550// Get statistic
551
[234]552     result[ii-iStart] = mathutil::statistics(which, tmp);
[130]553  }
554//
555  return result;
556}
557
[146]558
[716]559SDMemTable* SDMath::bin(const SDMemTable& in, Int width)
[144]560{
[169]561  SDHeader sh = in.getSDHeader();
562  SDMemTable* pTabOut = new SDMemTable(in, True);
[163]563
[169]564// Bin up SpectralCoordinates
[163]565
[169]566  IPosition factors(1);
567  factors(0) = width;
568  for (uInt j=0; j<in.nCoordinates(); ++j) {
569    CoordinateSystem cSys;
[288]570    cSys.addCoordinate(in.getSpectralCoordinate(j));
[779]571    CoordinateSystem cSysBin =
[185]572      CoordinateUtil::makeBinnedCoordinateSystem(factors, cSys, False);
[169]573//
574    SpectralCoordinate sCBin = cSysBin.spectralCoordinate(0);
575    pTabOut->setCoordinate(sCBin, j);
576  }
[163]577
[169]578// Use RebinLattice to find shape
[130]579
[169]580  IPosition shapeIn(1,sh.nchan);
[185]581  IPosition shapeOut = RebinLattice<Float>::rebinShape(shapeIn, factors);
[169]582  sh.nchan = shapeOut(0);
583  pTabOut->putSDHeader(sh);
[144]584
[169]585// Loop over rows and bin along channel axis
[779]586
[169]587  for (uInt i=0; i < in.nRow(); ++i) {
588    SDContainer sc = in.getSDContainer(i);
[144]589//
[169]590    Array<Float> tSys(sc.getTsys());                           // Get it out before sc changes shape
[144]591
[169]592// Bin up spectrum
[144]593
[169]594    MaskedArray<Float> marr(in.rowAsMaskedArray(i));
595    MaskedArray<Float> marrout;
[221]596    LatticeUtilities::bin(marrout, marr, asap::ChanAxis, width);
[144]597
[169]598// Put back the binned data and flags
[144]599
[169]600    IPosition ip2 = marrout.shape();
601    sc.resize(ip2);
[146]602//
[185]603    putDataInSDC(sc, marrout.getArray(), marrout.getMask());
[146]604
[779]605// Bin up Tsys.
[146]606
[169]607    Array<Bool> allGood(tSys.shape(),True);
608    MaskedArray<Float> tSysIn(tSys, allGood, True);
[146]609//
[779]610    MaskedArray<Float> tSysOut;
[221]611    LatticeUtilities::bin(tSysOut, tSysIn, asap::ChanAxis, width);
[169]612    sc.putTsys(tSysOut.getArray());
[146]613//
[169]614    pTabOut->putSDContainer(sc);
615  }
616  return pTabOut;
[146]617}
618
[488]619SDMemTable* SDMath::resample(const SDMemTable& in, const String& methodStr,
[779]620                             Float width)
[299]621//
622// Should add the possibility of width being specified in km/s. This means
[779]623// that for each freqID (SpectralCoordinate) we will need to convert to an
624// average channel width (say at the reference pixel).  Then we would need
625// to be careful to make sure each spectrum (of different freqID)
[299]626// is the same length.
627//
628{
629   Bool doVel = False;
[309]630   if (doVel) {
631      for (uInt j=0; j<in.nCoordinates(); ++j) {
632         SpectralCoordinate sC = in.getSpectralCoordinate(j);
633      }
[779]634   }
[299]635
636// Interpolation method
637
[317]638  InterpolateArray1D<Double,Float>::InterpolationMethod interp;
639  convertInterpString(interp, methodStr);
640  Int interpMethod(interp);
[299]641
642// Make output table
643
644  SDMemTable* pTabOut = new SDMemTable(in, True);
645
646// Resample SpectralCoordinates (one per freqID)
647
648  const uInt nCoord = in.nCoordinates();
649  Vector<Float> offset(1,0.0);
650  Vector<Float> factors(1,1.0/width);
651  Vector<Int> newShape;
652  for (uInt j=0; j<in.nCoordinates(); ++j) {
653    CoordinateSystem cSys;
654    cSys.addCoordinate(in.getSpectralCoordinate(j));
655    CoordinateSystem cSys2 = cSys.subImage(offset, factors, newShape);
656    SpectralCoordinate sC = cSys2.spectralCoordinate(0);
657//
658    pTabOut->setCoordinate(sC, j);
659  }
660
661// Get header
662
663  SDHeader sh = in.getSDHeader();
664
665// Generate resampling vectors
666
667  const uInt nChanIn = sh.nchan;
668  Vector<Float> xIn(nChanIn);
669  indgen(xIn);
670//
671  Int fac =  Int(nChanIn/width);
672  Vector<Float> xOut(fac+10);          // 10 to be safe - resize later
673  uInt i = 0;
674  Float x = 0.0;
675  Bool more = True;
676  while (more) {
677    xOut(i) = x;
678//
679    i++;
680    x += width;
681    if (x>nChanIn-1) more = False;
682  }
683  const uInt nChanOut = i;
684  xOut.resize(nChanOut,True);
685//
686  IPosition shapeIn(in.rowAsMaskedArray(0).shape());
687  sh.nchan = nChanOut;
688  pTabOut->putSDHeader(sh);
689
690// Loop over rows and resample along channel axis
691
692  Array<Float> valuesOut;
[779]693  Array<Bool> maskOut;
[299]694  Array<Float> tSysOut;
695  Array<Bool> tSysMaskIn(shapeIn,True);
696  Array<Bool> tSysMaskOut;
697  for (uInt i=0; i < in.nRow(); ++i) {
698
699// Get container
700
701     SDContainer sc = in.getSDContainer(i);
702
703// Get data and Tsys
[779]704
[299]705     const Array<Float>& tSysIn = sc.getTsys();
706     const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(i));
707     Array<Float> valuesIn = dataIn.getArray();
708     Array<Bool> maskIn = dataIn.getMask();
709
710// Interpolate data
711
[779]712     InterpolateArray1D<Float,Float>::interpolate(valuesOut, maskOut, xOut,
[299]713                                                  xIn, valuesIn, maskIn,
714                                                  interpMethod, True, True);
715     sc.resize(valuesOut.shape());
716     putDataInSDC(sc, valuesOut, maskOut);
717
718// Interpolate TSys
719
[779]720     InterpolateArray1D<Float,Float>::interpolate(tSysOut, tSysMaskOut, xOut,
[299]721                                                  xIn, tSysIn, tSysMaskIn,
722                                                  interpMethod, True, True);
723    sc.putTsys(tSysOut);
724
725// Put container in output
726
727    pTabOut->putSDContainer(sc);
728  }
729//
730  return pTabOut;
731}
732
[248]733SDMemTable* SDMath::unaryOperate(const SDMemTable& in, Float val, Bool doAll,
[716]734                                 uInt what, Bool doTSys)
[152]735//
736// what = 0   Multiply
737//        1   Add
[146]738{
[152]739   SDMemTable* pOut = new SDMemTable(in,False);
740   const Table& tOut = pOut->table();
[779]741   ArrayColumn<Float> specCol(tOut,"SPECTRA");
742   ArrayColumn<Float> tSysCol(tOut,"TSYS");
[294]743   Array<Float> tSysArr;
[434]744
745// Get data slice bounds
746
747   IPosition start, end;
748   setCursorSlice (start, end, doAll, in);
[146]749//
[434]750   for (uInt i=0; i<tOut.nrow(); i++) {
[294]751
752// Modify data
753
[434]754      MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
755      MaskedArray<Float> dataIn2 = dataIn(start,end);    // Reference
756      if (what==0) {
757         dataIn2 *= val;
758      } else if (what==1) {
759         dataIn2 += val;
760      }
761      specCol.put(i, dataIn.getArray());
[294]762
763// Modify Tsys
764
[434]765      if (doTSys) {
766         tSysCol.get(i, tSysArr);
767         Array<Float> tSysArr2 = tSysArr(start,end);     // Reference
[152]768         if (what==0) {
[434]769            tSysArr2 *= val;
[152]770         } else if (what==1) {
[434]771            tSysArr2 += val;
[152]772         }
[434]773         tSysCol.put(i, tSysArr);
[152]774      }
775   }
776//
[146]777   return pOut;
778}
779
[315]780SDMemTable* SDMath::averagePol(const SDMemTable& in, const Vector<Bool>& mask,
[716]781                               const String& weightStr)
[152]782//
[165]783// Average all polarizations together, weighted by variance
784//
785{
[315]786   WeightType wtType = NONE;
[532]787   convertWeightString(wtType, weightStr, True);
[165]788
789// Create output Table and reshape number of polarizations
790
791  Bool clear=True;
792  SDMemTable* pTabOut = new SDMemTable(in, clear);
793  SDHeader header = pTabOut->getSDHeader();
794  header.npol = 1;
795  pTabOut->putSDHeader(header);
[532]796//
797  const Table& tabIn = in.table();
[165]798
[779]799// Shape of input and output data
[165]800
[448]801  const IPosition& shapeIn = in.rowAsMaskedArray(0).shape();
[165]802  IPosition shapeOut(shapeIn);
[262]803  shapeOut(asap::PolAxis) = 1;                          // Average all polarizations
[315]804  if (shapeIn(asap::PolAxis)==1) {
[701]805    delete  pTabOut;
806    throw(AipsError("The input has only one polarisation"));
[315]807  }
[165]808//
[532]809  const uInt nRows = in.nRow();
[262]810  const uInt nChan = shapeIn(asap::ChanAxis);
[532]811  AlwaysAssert(asap::nAxes==4,AipsError);
[165]812  const IPosition vecShapeOut(4,1,1,1,nChan);     // A multi-dim form of a Vector shape
813  IPosition start(4), end(4);
814
815// Output arrays
816
817  Array<Float> outData(shapeOut, 0.0);
818  Array<Bool> outMask(shapeOut, True);
[262]819  const IPosition axes(2, asap::PolAxis, asap::ChanAxis);              // pol-channel plane
[532]820
821// Attach Tsys column if needed
822
823  ROArrayColumn<Float> tSysCol;
824  Array<Float> tSys;
825  if (wtType==TSYS) {
826     tSysCol.attach(tabIn,"TSYS");
827  }
[779]828//
[262]829  const Bool useMask = (mask.nelements() == shapeIn(asap::ChanAxis));
[165]830
831// Loop over rows
832
833   for (uInt iRow=0; iRow<nRows; iRow++) {
834
835// Get data for this row
836
837      MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
838      Array<Float>& arr = marr.getRWArray();
839      const Array<Bool>& barr = marr.getMask();
[779]840
[532]841// Get Tsys
[165]842
[532]843      if (wtType==TSYS) {
844         tSysCol.get(iRow,tSys);
845      }
846
[165]847// Make iterators to iterate by pol-channel planes
[532]848// The tSys array is empty unless wtType=TSYS so only
849// access the iterator is that is the case
[165]850
851      ReadOnlyArrayIterator<Float> itDataPlane(arr, axes);
852      ReadOnlyArrayIterator<Bool> itMaskPlane(barr, axes);
[532]853      ReadOnlyArrayIterator<Float>* pItTsysPlane = 0;
[779]854      if (wtType==TSYS)
855        pItTsysPlane = new ReadOnlyArrayIterator<Float>(tSys, axes);
[165]856
857// Accumulations
858
859      Float fac = 1.0;
860      Vector<Float> vecSum(nChan,0.0);
861
862// Iterate through data by pol-channel planes
863
864      while (!itDataPlane.pastEnd()) {
865
866// Iterate through plane by polarization  and accumulate Vectors
867
868        Vector<Float> t1(nChan); t1 = 0.0;
869        Vector<Bool> t2(nChan); t2 = True;
[779]870        Float tSys = 0.0;
[165]871        MaskedArray<Float> vecSum(t1,t2);
[315]872        Float norm = 0.0;
[165]873        {
874           ReadOnlyVectorIterator<Float> itDataVec(itDataPlane.array(), 1);
875           ReadOnlyVectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
[532]876//
877           ReadOnlyVectorIterator<Float>* pItTsysVec = 0;
[779]878           if (wtType==TSYS) {
879              pItTsysVec =
880                new ReadOnlyVectorIterator<Float>(pItTsysPlane->array(), 1);
881           }
[532]882//
[779]883           while (!itDataVec.pastEnd()) {
[165]884
[315]885// Create MA of data & mask (optionally including OTF mask) and  get variance for this spectrum
[165]886
887              if (useMask) {
[701]888                 const MaskedArray<Float> spec(itDataVec.vector(),
[779]889                                               mask&&itMaskVec.vector());
[532]890                 if (wtType==VAR) {
891                    fac = 1.0 / variance(spec);
892                 } else if (wtType==TSYS) {
[779]893                    tSys = pItTsysVec->vector()[0];      // Drop pseudo channel dependency
[532]894                    fac = 1.0 / tSys / tSys;
[779]895                 }
[165]896              } else {
[701]897                 const MaskedArray<Float> spec(itDataVec.vector(),
[779]898                                               itMaskVec.vector());
[532]899                 if (wtType==VAR) {
900                    fac = 1.0 / variance(spec);
901                 } else if (wtType==TSYS) {
[779]902                    tSys = pItTsysVec->vector()[0];      // Drop pseudo channel dependency
[532]903                    fac = 1.0 / tSys / tSys;
904                 }
[165]905              }
906
907// Normalize spectrum (without OTF mask) and accumulate
908
[701]909              const MaskedArray<Float> spec(fac*itDataVec.vector(),
[779]910                                            itMaskVec.vector());
[165]911              vecSum += spec;
[315]912              norm += fac;
[165]913
914// Next
915
916              itDataVec.next();
917              itMaskVec.next();
[779]918              if (wtType==TSYS) pItTsysVec->next();
[165]919           }
[779]920
[532]921// Clean up
922
[779]923           if (pItTsysVec) {
924              delete pItTsysVec;
[532]925              pItTsysVec = 0;
[779]926           }
[165]927        }
928
929// Normalize summed spectrum
930
[315]931        vecSum /= norm;
[165]932
933// FInd position in input data array.  We are iterating by pol-channel
934// plane so all that will change is beam and IF and that's what we want.
935
936        IPosition pos = itDataPlane.pos();
937
[779]938// Write out data. This is a bit messy. We have to reform the Vector
[165]939// accumulator into an Array of shape (1,1,1,nChan)
940
941        start = pos;
[779]942        end = pos;
[262]943        end(asap::ChanAxis) = nChan-1;
[165]944        outData(start,end) = vecSum.getArray().reform(vecShapeOut);
945        outMask(start,end) = vecSum.getMask().reform(vecShapeOut);
946
947// Step to next beam/IF combination
948
949        itDataPlane.next();
950        itMaskPlane.next();
[779]951        if (wtType==TSYS) pItTsysPlane->next();
[165]952      }
953
954// Generate output container and write it to output table
955
956      SDContainer sc = in.getSDContainer();
957      sc.resize(shapeOut);
958//
[185]959      putDataInSDC(sc, outData, outMask);
[165]960      pTabOut->putSDContainer(sc);
[532]961//
962      if (wtType==TSYS) {
963         delete pItTsysPlane;
964         pItTsysPlane = 0;
965      }
[165]966   }
[304]967
968// Set polarization cursor to 0
969
970  pTabOut->setPol(0);
[165]971//
972  return pTabOut;
973}
[167]974
[169]975
[779]976SDMemTable* SDMath::smooth(const SDMemTable& in,
977                           const casa::String& kernelType,
978                           casa::Float width, Bool doAll)
[299]979//
980// Should smooth TSys as well
981//
[177]982{
[169]983
[701]984  // Number of channels
[434]985   const uInt nChan = in.nChan();
[177]986
[701]987   // Generate Kernel
[185]988   VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernelType);
[177]989   Vector<Float> kernel = VectorKernel::make(type, width, nChan, True, False);
990
[701]991   // Generate Convolver
[177]992   IPosition shape(1,nChan);
993   Convolver<Float> conv(kernel, shape);
994
[701]995   // New Table
[177]996   SDMemTable* pTabOut = new SDMemTable(in,True);
997
[701]998   // Output Vectors
[434]999   Vector<Float> valuesOut(nChan);
1000   Vector<Bool> maskOut(nChan);
[177]1001
[701]1002   // Get data slice bounds
[434]1003   IPosition start, end;
1004   setCursorSlice (start, end, doAll, in);
1005
[701]1006   // Loop over rows in Table
[434]1007   for (uInt ri=0; ri < in.nRow(); ++ri) {
[177]1008
[701]1009     // Get slice of data
[434]1010      MaskedArray<Float> dataIn = in.rowAsMaskedArray(ri);
[177]1011
[701]1012      // Deconstruct and get slices which reference these arrays
[434]1013      Array<Float> valuesIn = dataIn.getArray();
1014      Array<Bool> maskIn = dataIn.getMask();
[701]1015
[779]1016      Array<Float> valuesIn2 = valuesIn(start,end);       // ref to valuesIn
[434]1017      Array<Bool> maskIn2 = maskIn(start,end);
[177]1018
[701]1019      // Iterate through by spectra
[434]1020      VectorIterator<Float> itValues(valuesIn2, asap::ChanAxis);
1021      VectorIterator<Bool> itMask(maskIn2, asap::ChanAxis);
1022      while (!itValues.pastEnd()) {
[177]1023
[779]1024        // Smooth
1025        if (kernelType==VectorKernel::HANNING) {
1026          mathutil::hanning(valuesOut, maskOut, itValues.vector(),
1027                            itMask.vector());
1028          itMask.vector() = maskOut;
1029        } else {
1030          mathutil::replaceMaskByZero(itValues.vector(), itMask.vector());
1031          conv.linearConv(valuesOut, itValues.vector());
1032        }
1033
1034        itValues.vector() = valuesOut;
1035        itValues.next();
1036        itMask.next();
[434]1037      }
[779]1038
[701]1039      // Create and put back
[434]1040      SDContainer sc = in.getSDContainer(ri);
1041      putDataInSDC(sc, valuesIn, maskIn);
[701]1042
[434]1043      pTabOut->putSDContainer(sc);
1044   }
[701]1045
[177]1046  return pTabOut;
1047}
1048
1049
[262]1050
[779]1051SDMemTable* SDMath::convertFlux(const SDMemTable& in, Float D, Float etaAp,
1052                                Float JyPerK, Bool doAll)
1053//
[478]1054// etaAp = aperture efficiency (-1 means find)
1055// D     = geometric diameter (m)  (-1 means find)
[779]1056// JyPerK
[221]1057//
1058{
1059  SDHeader sh = in.getSDHeader();
1060  SDMemTable* pTabOut = new SDMemTable(in, True);
[177]1061
[701]1062  // Find out how to convert values into Jy and K (e.g. units might be
1063  // mJy or mK) Also automatically find out what we are converting to
1064  // according to the flux unit
[779]1065  Unit fluxUnit(sh.fluxunit);
[221]1066  Unit K(String("K"));
1067  Unit JY(String("Jy"));
[701]1068
[221]1069  Bool toKelvin = True;
[779]1070  Double cFac = 1.0;
[716]1071
[221]1072  if (fluxUnit==JY) {
[716]1073    pushLog("Converting to K");
[701]1074    Quantum<Double> t(1.0,fluxUnit);
1075    Quantum<Double> t2 = t.get(JY);
1076    cFac = (t2 / t).getValue();               // value to Jy
[779]1077
[701]1078    toKelvin = True;
1079    sh.fluxunit = "K";
[221]1080  } else if (fluxUnit==K) {
[716]1081    pushLog("Converting to Jy");
[701]1082    Quantum<Double> t(1.0,fluxUnit);
1083    Quantum<Double> t2 = t.get(K);
1084    cFac = (t2 / t).getValue();              // value to K
[779]1085
[701]1086    toKelvin = False;
1087    sh.fluxunit = "Jy";
[221]1088  } else {
[701]1089    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
[221]1090  }
[716]1091
[221]1092  pTabOut->putSDHeader(sh);
[779]1093
[701]1094  // Make sure input values are converted to either Jy or K first...
[354]1095  Float factor = cFac;
[221]1096
[701]1097  // Select method
[354]1098  if (JyPerK>0.0) {
[701]1099    factor *= JyPerK;
1100    if (toKelvin) factor = 1.0 / JyPerK;
[716]1101    ostringstream oss;
1102    oss << "Jy/K = " << JyPerK;
1103    pushLog(String(oss));
[701]1104    Vector<Float> factors(in.nRow(), factor);
1105    scaleByVector(pTabOut, in, doAll, factors, False);
[354]1106  } else if (etaAp>0.0) {
[701]1107    Bool throwIt = True;
[716]1108    Instrument inst = SDAttr::convertInstrument(sh.antennaname, throwIt);
[701]1109    SDAttr sda;
1110    if (D < 0) D = sda.diameter(inst);
[716]1111    Float JyPerK = SDAttr::findJyPerK(etaAp,D);
1112    ostringstream oss;
1113    oss << "Jy/K = " << JyPerK;
1114    pushLog(String(oss));
[701]1115    factor *= JyPerK;
1116    if (toKelvin) {
1117      factor = 1.0 / factor;
1118    }
1119
1120    Vector<Float> factors(in.nRow(), factor);
1121    scaleByVector(pTabOut, in, doAll, factors, False);
[354]1122  } else {
[779]1123
[701]1124    // OK now we must deal with automatic look up of values.
1125    // We must also deal with the fact that the factors need
1126    // to be computed per IF and may be different and may
1127    // change per integration.
[779]1128
[716]1129    pushLog("Looking up conversion factors");
[701]1130    convertBrightnessUnits (pTabOut, in, toKelvin, cFac, doAll);
1131  }
[221]1132  return pTabOut;
1133}
1134
1135
[779]1136SDMemTable* SDMath::gainElevation(const SDMemTable& in,
1137                                  const Vector<Float>& coeffs,
1138                                  const String& fileName,
1139                                  const String& methodStr, Bool doAll)
[227]1140{
[234]1141
[701]1142  // Get header and clone output table
[227]1143  SDHeader sh = in.getSDHeader();
1144  SDMemTable* pTabOut = new SDMemTable(in, True);
1145
[701]1146  // Get elevation data from SDMemTable and convert to degrees
[227]1147  const Table& tab = in.table();
1148  ROScalarColumn<Float> elev(tab, "ELEVATION");
[234]1149  Vector<Float> x = elev.getColumn();
[363]1150  x *= Float(180 / C::pi);                        // Degrees
[779]1151
[234]1152  const uInt nC = coeffs.nelements();
1153  if (fileName.length()>0 && nC>0) {
[701]1154    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
[234]1155  }
[779]1156
[701]1157  // Correct
[234]1158  if (nC>0 || fileName.length()==0) {
[701]1159    // Find instrument
[234]1160     Bool throwIt = True;
[478]1161     Instrument inst = SDAttr::convertInstrument (sh.antennaname, throwIt);
[779]1162
[701]1163     // Set polynomial
[234]1164     Polynomial<Float>* pPoly = 0;
1165     Vector<Float> coeff;
1166     String msg;
1167     if (nC>0) {
[701]1168       pPoly = new Polynomial<Float>(nC);
1169       coeff = coeffs;
1170       msg = String("user");
[234]1171     } else {
[701]1172       SDAttr sdAttr;
1173       coeff = sdAttr.gainElevationPoly(inst);
1174       pPoly = new Polynomial<Float>(3);
1175       msg = String("built in");
[234]1176     }
[779]1177
[234]1178     if (coeff.nelements()>0) {
[701]1179       pPoly->setCoefficients(coeff);
[234]1180     } else {
[701]1181       delete pPoly;
1182       throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
[234]1183     }
[779]1184     ostringstream oss;
1185     oss << "Making polynomial correction with " << msg << " coefficients:" << endl;
1186     oss << "   " <<  coeff;
1187     pushLog(String(oss));
[234]1188     const uInt nRow = in.nRow();
1189     Vector<Float> factor(nRow);
1190     for (uInt i=0; i<nRow; i++) {
[701]1191       factor[i] = 1.0 / (*pPoly)(x[i]);
[234]1192     }
1193     delete pPoly;
[480]1194     scaleByVector (pTabOut, in, doAll, factor, True);
[701]1195
[234]1196  } else {
[779]1197
[701]1198    // Indicate which columns to read from ascii file
1199    String col0("ELEVATION");
1200    String col1("FACTOR");
[779]1201
[701]1202    // Read and correct
[779]1203
[716]1204    pushLog("Making correction from ascii Table");
[779]1205    scaleFromAsciiTable (pTabOut, in, fileName, col0, col1,
1206                         methodStr, doAll, x, True);
[701]1207  }
[234]1208
[701]1209  return pTabOut;
[230]1210}
[227]1211
[779]1212
[716]1213SDMemTable* SDMath::opacity(const SDMemTable& in, Float tau, Bool doAll)
[234]1214{
[227]1215
[701]1216  // Get header and clone output table
[227]1217
[234]1218  SDHeader sh = in.getSDHeader();
1219  SDMemTable* pTabOut = new SDMemTable(in, True);
1220
1221// Get elevation data from SDMemTable and convert to degrees
1222
1223  const Table& tab = in.table();
1224  ROScalarColumn<Float> elev(tab, "ELEVATION");
1225  Vector<Float> zDist = elev.getColumn();
1226  zDist = Float(C::pi_2) - zDist;
1227
1228// Generate correction factor
1229
1230  const uInt nRow = in.nRow();
1231  Vector<Float> factor(nRow);
1232  Vector<Float> factor2(nRow);
1233  for (uInt i=0; i<nRow; i++) {
1234     factor[i] = exp(tau)/cos(zDist[i]);
1235  }
1236
1237// Correct
1238
[480]1239  scaleByVector (pTabOut, in, doAll, factor, True);
[701]1240
[234]1241  return pTabOut;
1242}
1243
1244
[488]1245void SDMath::rotateXYPhase(SDMemTable& in, Float value, Bool doAll)
[457]1246//
1247// phase in degrees
[518]1248// assumes linear correlations
[457]1249//
1250{
[701]1251  if (in.nPol() != 4) {
1252    throw(AipsError("You must have 4 polarizations to run this function"));
1253  }
1254
[518]1255   SDHeader sh = in.getSDHeader();
[716]1256   Instrument inst = SDAttr::convertInstrument(sh.antennaname, False);
[518]1257   SDAttr sdAtt;
1258   if (sdAtt.feedPolType(inst) != LINEAR) {
1259      throw(AipsError("Only linear polarizations are supported"));
1260   }
[779]1261//
[457]1262   const Table& tabIn = in.table();
[779]1263   ArrayColumn<Float> specCol(tabIn,"SPECTRA");
[457]1264   IPosition start(asap::nAxes,0);
1265   IPosition end(asap::nAxes);
[234]1266
[457]1267// Set cursor slice. Assumes shape the same for all rows
[779]1268
[457]1269   setCursorSlice (start, end, doAll, in);
1270   IPosition start3(start);
1271   start3(asap::PolAxis) = 2;                 // Real(XY)
1272   IPosition end3(end);
[779]1273   end3(asap::PolAxis) = 2;
[457]1274//
1275   IPosition start4(start);
1276   start4(asap::PolAxis) = 3;                 // Imag (XY)
1277   IPosition end4(end);
1278   end4(asap::PolAxis) = 3;
[779]1279//
[457]1280   uInt nRow = in.nRow();
1281   Array<Float> data;
1282   for (uInt i=0; i<nRow;++i) {
1283      specCol.get(i,data);
1284      IPosition shape = data.shape();
[779]1285
[701]1286      // Get polarization slice references
[457]1287      Array<Float> C3 = data(start3,end3);
1288      Array<Float> C4 = data(start4,end4);
[779]1289
[701]1290      // Rotate
[502]1291      SDPolUtil::rotatePhase(C3, C4, value);
[779]1292
[701]1293      // Put
[457]1294      specCol.put(i,data);
1295   }
[779]1296}
[234]1297
[502]1298
1299void SDMath::rotateLinPolPhase(SDMemTable& in, Float value, Bool doAll)
1300//
1301// phase in degrees
[518]1302// assumes linear correlations
[502]1303//
1304{
1305   if (in.nPol() != 4) {
1306      throw(AipsError("You must have 4 polarizations to run this function"));
1307   }
[518]1308//
1309   SDHeader sh = in.getSDHeader();
[716]1310   Instrument inst = SDAttr::convertInstrument(sh.antennaname, False);
[518]1311   SDAttr sdAtt;
1312   if (sdAtt.feedPolType(inst) != LINEAR) {
1313      throw(AipsError("Only linear polarizations are supported"));
1314   }
[779]1315//
[502]1316   const Table& tabIn = in.table();
[779]1317   ArrayColumn<Float> specCol(tabIn,"SPECTRA");
1318   ROArrayColumn<Float> stokesCol(tabIn,"STOKES");
[502]1319   IPosition start(asap::nAxes,0);
1320   IPosition end(asap::nAxes);
1321
1322// Set cursor slice. Assumes shape the same for all rows
[779]1323
[502]1324   setCursorSlice (start, end, doAll, in);
1325//
1326   IPosition start1(start);
1327   start1(asap::PolAxis) = 0;                // C1 (XX)
1328   IPosition end1(end);
[779]1329   end1(asap::PolAxis) = 0;
[502]1330//
1331   IPosition start2(start);
1332   start2(asap::PolAxis) = 1;                 // C2 (YY)
1333   IPosition end2(end);
[779]1334   end2(asap::PolAxis) = 1;
[502]1335//
1336   IPosition start3(start);
1337   start3(asap::PolAxis) = 2;                 // C3 ( Real(XY) )
1338   IPosition end3(end);
[779]1339   end3(asap::PolAxis) = 2;
[502]1340//
1341   IPosition startI(start);
1342   startI(asap::PolAxis) = 0;                 // I
1343   IPosition endI(end);
[779]1344   endI(asap::PolAxis) = 0;
[502]1345//
1346   IPosition startQ(start);
1347   startQ(asap::PolAxis) = 1;                 // Q
1348   IPosition endQ(end);
[779]1349   endQ(asap::PolAxis) = 1;
[502]1350//
1351   IPosition startU(start);
1352   startU(asap::PolAxis) = 2;                 // U
1353   IPosition endU(end);
[779]1354   endU(asap::PolAxis) = 2;
[502]1355
1356//
1357   uInt nRow = in.nRow();
1358   Array<Float> data, stokes;
1359   for (uInt i=0; i<nRow;++i) {
1360      specCol.get(i,data);
1361      stokesCol.get(i,stokes);
1362      IPosition shape = data.shape();
[779]1363
[502]1364// Get linear polarization slice references
[779]1365
[502]1366      Array<Float> C1 = data(start1,end1);
1367      Array<Float> C2 = data(start2,end2);
1368      Array<Float> C3 = data(start3,end3);
1369
1370// Get STokes slice references
1371
1372      Array<Float> I = stokes(startI,endI);
1373      Array<Float> Q = stokes(startQ,endQ);
1374      Array<Float> U = stokes(startU,endU);
[779]1375
[502]1376// Rotate
[779]1377
[502]1378      SDPolUtil::rotateLinPolPhase(C1, C2, C3, I, Q, U, value);
[779]1379
[502]1380// Put
[779]1381
[502]1382      specCol.put(i,data);
1383   }
[779]1384}
[502]1385
[797]1386void SDMath::invertPhase(SDMemTable& in, Bool doAll)
1387//
1388// Takes complex conjugate of complex correlation
1389// should work ok for linear and circular polarisation
1390//
1391{
1392  if (in.nPol() != 4) {
1393    throw(AipsError("You must have 4 polarizations to run this function"));
1394  }
1395
1396  //SDHeader sh = in.getSDHeader();
1397  //Instrument inst = SDAttr::convertInstrument(sh.antennaname, False);
1398  //   SDAttr sdAtt;
1399  // if (sdAtt.feedPolType(inst) != LINEAR) {
1400  //   throw(AipsError("Only linear polarizations are supported"));
1401  //}
1402//
1403   const Table& tabIn = in.table();
1404   ArrayColumn<Float> specCol(tabIn,"SPECTRA");
1405   IPosition start(asap::nAxes,0);
1406   IPosition end(asap::nAxes);
1407
1408// Set cursor slice. Assumes shape the same for all rows
1409
1410   setCursorSlice (start, end, doAll, in);
1411
1412   IPosition start4(start);
1413   start4(asap::PolAxis) = 3;                 // Imag (XY)
1414   IPosition end4(end);
1415   end4(asap::PolAxis) = 3;
1416//
1417   uInt nRow = in.nRow();
1418   Array<Float> data;
1419   for (uInt i=0; i<nRow;++i) {
1420      specCol.get(i,data);
1421      IPosition shape = data.shape();
1422
1423      // Get polarization slice references
1424      Array<Float> C4 = data(start4,end4);
1425
1426      // Invert
[798]1427      C4 *= -1.0f;
[797]1428
1429      // Put
1430      specCol.put(i,data);
1431   }
1432}
1433
1434void SDMath::swapPol(SDMemTable& in, Bool doAll)
1435//
1436// phase in degrees
1437// assumes linear correlations
1438//
1439{
1440   if (in.nPol() != 4 && in.nPol() != 2) {
1441      throw(AipsError("You must have 2 or 4 polarizations to run this function"));
1442   }
1443//
1444//   SDHeader sh = in.getSDHeader();
1445//   Instrument inst = SDAttr::convertInstrument(sh.antennaname, False);
1446//   SDAttr sdAtt;
1447   //  if (sdAtt.feedPolType(inst) != LINEAR) {
1448   //   throw(AipsError("Only linear polarizations are supported"));
1449   //  }
1450//
1451   const Table& tabIn = in.table();
1452   ArrayColumn<Float> specCol(tabIn,"SPECTRA");
1453   ROArrayColumn<Float> stokesCol(tabIn,"STOKES");
1454   IPosition start(asap::nAxes,0);
1455   IPosition end(asap::nAxes);
1456
1457// Set cursor slice. Assumes shape the same for all rows
1458
1459   setCursorSlice (start, end, doAll, in);
1460//
1461   IPosition start1(start);
1462   start1(asap::PolAxis) = 0;                // C1 (XX)
1463   IPosition end1(end);
1464   end1(asap::PolAxis) = 0;
1465//
1466   IPosition start2(start);
1467   start2(asap::PolAxis) = 1;                 // C2 (YY)
1468   IPosition end2(end);
1469   end2(asap::PolAxis) = 1;
1470//
1471   uInt nRow = in.nRow();
1472   Array<Float> data, stokes;
1473   for (uInt i=0; i<nRow;++i) {
1474      specCol.get(i,data);
1475      stokesCol.get(i,stokes);
1476      IPosition shape = data.shape();
1477
1478// Get linear polarization slice references
1479
1480      Array<Float> C1 = data(start1,end1);
1481      Array<Float> C2 = data(start2,end2);
1482
1483// Swap
1484
[798]1485      Array<Float> tmp;
1486      tmp = C1;
[797]1487      C1 = C2;
1488      C2 = C1;
1489
1490// Put
1491
1492      specCol.put(i,data);
1493   }
1494}
1495
[169]1496// 'private' functions
1497
[779]1498void SDMath::convertBrightnessUnits (SDMemTable* pTabOut, const SDMemTable& in,
[716]1499                                     Bool toKelvin, Float cFac, Bool doAll)
[354]1500{
[309]1501
[354]1502// Get header
1503
1504   SDHeader sh = in.getSDHeader();
1505   const uInt nChan = sh.nchan;
1506
1507// Get instrument
1508
1509   Bool throwIt = True;
[716]1510   Instrument inst = SDAttr::convertInstrument(sh.antennaname, throwIt);
[354]1511
1512// Get Diameter (m)
1513
1514   SDAttr sdAtt;
1515// Get epoch of first row
1516
1517   MEpoch dateObs = in.getEpoch(0);
1518
1519// Generate a Vector of correction factors. One per FreqID
1520
1521   SDFrequencyTable sdft = in.getSDFreqTable();
1522   Vector<uInt> freqIDs;
1523//
1524   Vector<Float> freqs(sdft.length());
1525   for (uInt i=0; i<sdft.length(); i++) {
1526      freqs(i) = (nChan/2 - sdft.referencePixel(i))*sdft.increment(i) + sdft.referenceValue(i);
1527   }
1528//
1529   Vector<Float> JyPerK = sdAtt.JyPerK(inst, dateObs, freqs);
[716]1530   ostringstream oss;
1531   oss << "Jy/K = " << JyPerK;
1532   pushLog(String(oss));
[354]1533   Vector<Float> factors = cFac * JyPerK;
1534   if (toKelvin) factors = Float(1.0) / factors;
1535
[434]1536// Get data slice bounds
[354]1537
1538   IPosition start, end;
[434]1539   setCursorSlice (start, end, doAll, in);
[354]1540   const uInt ifAxis = in.getIF();
1541
1542// Iteration axes
1543
1544   IPosition axes(asap::nAxes-1,0);
1545   for (uInt i=0,j=0; i<asap::nAxes; i++) {
1546      if (i!=asap::IFAxis) {
1547         axes(j++) = i;
1548      }
1549   }
1550
1551// Loop over rows and apply correction factor
1552
[779]1553   Float factor = 1.0;
[354]1554   const uInt axis = asap::ChanAxis;
1555   for (uInt i=0; i < in.nRow(); ++i) {
1556
1557// Get data
1558
[434]1559      MaskedArray<Float> dataIn = in.rowAsMaskedArray(i);
1560      Array<Float>& values = dataIn.getRWArray();           // Ref to dataIn
1561      Array<Float> values2 = values(start,end);             // Ref to values to dataIn
[354]1562
1563// Get SDCOntainer
1564
1565      SDContainer sc = in.getSDContainer(i);
1566
1567// Get FreqIDs
1568
1569      freqIDs = sc.getFreqMap();
1570
1571// Now the conversion factor depends only upon frequency
[779]1572// So we need to iterate through by IF only giving
[354]1573// us BEAM/POL/CHAN cubes
1574
[434]1575      ArrayIterator<Float> itIn(values2, axes);
1576      uInt ax = 0;
1577      while (!itIn.pastEnd()) {
1578        itIn.array() *= factors(freqIDs(ax));         // Writes back to dataIn
1579        itIn.next();
[354]1580      }
1581
1582// Write out
1583
1584      putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
1585//
1586      pTabOut->putSDContainer(sc);
1587   }
1588}
1589
1590
1591
[701]1592SDMemTable* SDMath::frequencyAlign(const SDMemTable& in,
[309]1593                                   MFrequency::Types freqSystem,
[779]1594                                   const String& refTime,
[397]1595                                   const String& methodStr,
[716]1596                                   Bool perFreqID)
[267]1597{
1598// Get Header
1599
1600   SDHeader sh = in.getSDHeader();
1601   const uInt nChan = sh.nchan;
1602   const uInt nRows = in.nRow();
[330]1603   const uInt nIF = sh.nif;
[267]1604
1605// Get Table reference
1606
1607   const Table& tabIn = in.table();
1608
1609// Get Columns from Table
1610
[294]1611   ROScalarColumn<Double> mjdCol(tabIn, "TIME");
1612   ROScalarColumn<String> srcCol(tabIn, "SRCNAME");
1613   ROArrayColumn<uInt> fqIDCol(tabIn, "FREQID");
1614   Vector<Double> times = mjdCol.getColumn();
[267]1615
[779]1616// Generate DataDesc table
1617
[330]1618   Matrix<uInt> ddIdx;
1619   SDDataDesc dDesc;
[779]1620   generateDataDescTable(ddIdx, dDesc, nIF, in, tabIn, srcCol,
1621                          fqIDCol, perFreqID);
[267]1622
[294]1623// Get reference Epoch to time of first row or given String
[779]1624
[267]1625   Unit DAY(String("d"));
[272]1626   MEpoch::Ref epochRef(in.getTimeReference());
1627   MEpoch refEpoch;
1628   if (refTime.length()>0) {
[701]1629     refEpoch = epochFromString(refTime, in.getTimeReference());
[272]1630   } else {
[701]1631     refEpoch = in.getEpoch(0);
[272]1632   }
[779]1633   ostringstream oss;
1634   oss << "Aligned at reference Epoch " << formatEpoch(refEpoch) << " in frame " << MFrequency::showType(freqSystem);
1635   pushLog(String(oss));
1636
[701]1637   // Get Reference Position
[779]1638
[288]1639   MPosition refPos = in.getAntennaPosition();
[779]1640
[701]1641   // Create FrequencyAligner Block. One FA for each possible
1642   // source/freqID (perFreqID=True) or source/IF (perFreqID=False)
1643   // combination
[779]1644
[330]1645   PtrBlock<FrequencyAligner<Float>* > a(dDesc.length());
[779]1646   generateFrequencyAligners(a, dDesc, in, nChan, freqSystem, refPos,
[397]1647                              refEpoch, perFreqID);
[779]1648
[701]1649   // Generate and fill output Frequency Table.  WHen perFreqID=True,
1650   // there is one output FreqID for each entry in the SDDataDesc
1651   // table.  However, in perFreqID=False mode, there may be some
1652   // degeneracy, so we need a little translation map
[779]1653
[330]1654   SDFrequencyTable freqTabOut = in.getSDFreqTable();
1655   freqTabOut.setLength(0);
1656   Vector<String> units(1);
1657   units = String("Hz");
1658   Bool linear=True;
[701]1659   //
[397]1660   Vector<uInt> ddFQTrans(dDesc.length(),0);
[330]1661   for (uInt i=0; i<dDesc.length(); i++) {
1662
[701]1663     // Get Aligned SC in Hz
[779]1664
[701]1665     SpectralCoordinate sC = a[i]->alignedSpectralCoordinate(linear);
1666     sC.setWorldAxisUnits(units);
[779]1667
[701]1668     // Add FreqID
[779]1669
[701]1670     uInt idx = freqTabOut.addFrequency(sC.referencePixel()[0],
[779]1671                                        sC.referenceValue()[0],
1672                                        sC.increment()[0]);
[701]1673     // output FreqID = ddFQTrans(ddIdx)
1674     ddFQTrans(i) = idx;
[330]1675   }
[779]1676
[701]1677   // Interpolation method
[779]1678
[317]1679   InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1680   convertInterpString(interp, methodStr);
[779]1681
[701]1682   // New output Table
[779]1683
1684   //pushLog("Create output table");
[267]1685   SDMemTable* pTabOut = new SDMemTable(in,True);
[330]1686   pTabOut->putSDFreqTable(freqTabOut);
[779]1687
[701]1688   // Loop over rows in Table
[779]1689
[330]1690   Bool extrapolate=False;
[294]1691   const IPosition polChanAxes(2, asap::PolAxis, asap::ChanAxis);
1692   Bool useCachedAbcissa = False;
1693   Bool first = True;
1694   Bool ok;
1695   Vector<Float> yOut;
1696   Vector<Bool> maskOut;
[330]1697   Vector<uInt> freqID(nIF);
[309]1698   uInt ifIdx, faIdx;
[397]1699   Vector<Double> xIn;
[701]1700   //
[294]1701   for (uInt iRow=0; iRow<nRows; ++iRow) {
[779]1702//      if (iRow%10==0) {
1703//        ostringstream oss;
1704//        oss << "Processing row " << iRow;
1705//        pushLog(String(oss));
1706//      }
1707
[701]1708     // Get EPoch
[779]1709
[294]1710     Quantum<Double> tQ2(times[iRow],DAY);
1711     MVEpoch mv2(tQ2);
1712     MEpoch epoch(mv2, epochRef);
[779]1713
[701]1714     // Get copy of data
[779]1715
[294]1716     const MaskedArray<Float>& mArrIn(in.rowAsMaskedArray(iRow));
1717     Array<Float> values = mArrIn.getArray();
[779]1718     Array<Bool> mask = mArrIn.getMask();
1719
[701]1720     // For each row, the Frequency abcissa will be the same
1721     // regardless of polarization.  For all other axes (IF and BEAM)
1722     // the abcissa will change.  So we iterate through the data by
1723     // pol-chan planes to mimimize the work.  Probably won't work for
1724     // multiple beams at this point.
[779]1725
[294]1726     ArrayIterator<Float> itValuesPlane(values, polChanAxes);
1727     ArrayIterator<Bool> itMaskPlane(mask, polChanAxes);
1728     while (!itValuesPlane.pastEnd()) {
[267]1729
[701]1730       // Find the IF index and then the FA PtrBlock index
[779]1731
[701]1732       const IPosition& pos = itValuesPlane.pos();
1733       ifIdx = pos(asap::IFAxis);
1734       faIdx = ddIdx(iRow,ifIdx);
[779]1735
[701]1736       // Generate abcissa for perIF.  Could cache this in a Matrix on
1737       // a per scan basis.  Pretty expensive doing it for every row.
[779]1738
[701]1739       if (!perFreqID) {
[779]1740         xIn.resize(nChan);
1741         uInt fqID = dDesc.secID(ddIdx(iRow,ifIdx));
1742         SpectralCoordinate sC = in.getSpectralCoordinate(fqID);
[397]1743           Double w;
1744           for (uInt i=0; i<nChan; i++) {
[779]1745             sC.toWorld(w,Double(i));
[397]1746              xIn[i] = w;
1747           }
[701]1748       }
[779]1749
1750       VectorIterator<Float> itValuesVec(itValuesPlane.array(), 1);
[701]1751       VectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
[330]1752
[701]1753       // Iterate through the plane by vector and align
[779]1754
[294]1755        first = True;
1756        useCachedAbcissa=False;
[779]1757        while (!itValuesVec.pastEnd()) {
1758          if (perFreqID) {
1759            ok = a[faIdx]->align (yOut, maskOut, itValuesVec.vector(),
1760                                  itMaskVec.vector(), epoch, useCachedAbcissa,
1761                                  interp, extrapolate);
1762          } else {
1763            ok = a[faIdx]->align (yOut, maskOut, xIn, itValuesVec.vector(),
1764                                  itMaskVec.vector(), epoch, useCachedAbcissa,
1765                                  interp, extrapolate);
1766          }
1767          //
1768          itValuesVec.vector() = yOut;
1769          itMaskVec.vector() = maskOut;
1770          //
1771          itValuesVec.next();
1772          itMaskVec.next();
1773          //
1774          if (first) {
1775            useCachedAbcissa = True;
1776            first = False;
1777          }
[294]1778        }
[779]1779        //
1780        itValuesPlane.next();
1781        itMaskPlane.next();
[294]1782     }
[779]1783
[701]1784     // Create SDContainer and put back
[779]1785
[701]1786     SDContainer sc = in.getSDContainer(iRow);
1787     putDataInSDC(sc, values, mask);
[779]1788
[701]1789     // Set output FreqIDs
[779]1790
[701]1791     for (uInt i=0; i<nIF; i++) {
[397]1792       uInt idx = ddIdx(iRow,i);               // Index into SDDataDesc table
1793       freqID(i) = ddFQTrans(idx);             // FreqID in output FQ table
[701]1794     }
1795     sc.putFreqMap(freqID);
1796     //
1797     pTabOut->putSDContainer(sc);
[294]1798   }
[779]1799
[701]1800   // Now we must set the base and extra frames to the input frame
[309]1801   std::vector<string> info = pTabOut->getCoordInfo();
1802   info[1] = MFrequency::showType(freqSystem);   // Conversion frame
1803   info[3] = info[1];                            // Base frame
1804   pTabOut->setCoordInfo(info);
1805
[779]1806   // Clean up PointerBlock
[701]1807   for (uInt i=0; i<a.nelements(); i++) delete a[i];
[267]1808
[309]1809   return pTabOut;
[267]1810}
1811
1812
[716]1813SDMemTable* SDMath::frequencySwitch(const SDMemTable& in)
[701]1814{
1815  if (in.nIF() != 2) {
1816    throw(AipsError("nIF != 2 "));
1817  }
1818  Bool clear = True;
1819  SDMemTable* pTabOut = new SDMemTable(in, clear);
1820  const Table& tabIn = in.table();
1821
[779]1822  // Shape of input and output data
[701]1823  const IPosition& shapeIn = in.rowAsMaskedArray(0).shape();
1824
1825  const uInt nRows = in.nRow();
1826  AlwaysAssert(asap::nAxes==4,AipsError);
1827
1828  ROArrayColumn<Float> tSysCol;
1829  Array<Float> tsys;
1830  tSysCol.attach(tabIn,"TSYS");
1831
1832  for (uInt iRow=0; iRow<nRows; iRow++) {
1833    // Get data for this row
1834    MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
1835    tSysCol.get(iRow, tsys);
1836
1837    // whole Array for IF 0
1838    IPosition start(asap::nAxes,0);
1839    IPosition end = shapeIn-1;
1840    end(asap::IFAxis) = 0;
1841
1842    MaskedArray<Float> on = marr(start,end);
1843    Array<Float> ton = tsys(start,end);
1844    // Make a copy as "src" is a refrence which is manipulated.
1845    // oncopy is needed for the inverse quotient
1846    MaskedArray<Float> oncopy = on.copy();
1847
1848    // whole Array for IF 1
1849    start(asap::IFAxis) = 1;
1850    end(asap::IFAxis) = 1;
1851
1852    MaskedArray<Float> off = marr(start,end);
1853    Array<Float> toff = tsys(start,end);
1854
1855    on /= off; on -= 1.0f;
1856    on *= ton;
1857    off /= oncopy; off -= 1.0f;
1858    off *= toff;
1859
1860    SDContainer sc = in.getSDContainer(iRow);
1861    putDataInSDC(sc, marr.getArray(), marr.getMask());
1862    pTabOut->putSDContainer(sc);
1863  }
1864  return pTabOut;
1865}
1866
[185]1867void SDMath::fillSDC(SDContainer& sc,
[779]1868                     const Array<Bool>& mask,
1869                     const Array<Float>& data,
1870                     const Array<Float>& tSys,
1871                     Int scanID, Double timeStamp,
1872                     Double interval, const String& sourceName,
1873                     const Vector<uInt>& freqID)
[167]1874{
[169]1875// Data and mask
[167]1876
[185]1877  putDataInSDC(sc, data, mask);
[167]1878
[169]1879// TSys
1880
1881  sc.putTsys(tSys);
1882
1883// Time things
1884
1885  sc.timestamp = timeStamp;
1886  sc.interval = interval;
1887  sc.scanid = scanID;
[167]1888//
[169]1889  sc.sourcename = sourceName;
1890  sc.putFreqMap(freqID);
1891}
[167]1892
[185]1893void SDMath::accumulate(Double& timeSum, Double& intSum, Int& nAccum,
[779]1894                        MaskedArray<Float>& sum, Array<Float>& sumSq,
1895                        Array<Float>& nPts, Array<Float>& tSysSum,
[518]1896                        Array<Float>& tSysSqSum,
[779]1897                        const Array<Float>& tSys, const Array<Float>& nInc,
1898                        const Vector<Bool>& mask, Double time, Double interval,
1899                        const std::vector<CountedPtr<SDMemTable> >& in,
1900                        uInt iTab, uInt iRow, uInt axis,
1901                        uInt nAxesSub, Bool useMask,
1902                        WeightType wtType)
[169]1903{
1904
1905// Get data
1906
1907   MaskedArray<Float> dataIn(in[iTab]->rowAsMaskedArray(iRow));
1908   Array<Float>& valuesIn = dataIn.getRWArray();           // writable reference
1909   const Array<Bool>& maskIn = dataIn.getMask();          // RO reference
[167]1910//
[169]1911   if (wtType==NONE) {
1912      const MaskedArray<Float> n(nInc,dataIn.getMask());
1913      nPts += n;                               // Only accumulates where mask==T
[518]1914   } else if (wtType==TINT) {
1915
1916// We are weighting the data by integration time.
1917
1918     valuesIn *= Float(interval);
1919
[169]1920   } else if (wtType==VAR) {
[167]1921
[169]1922// We are going to average the data, weighted by the noise for each pol, beam and IF.
1923// So therefore we need to iterate through by spectrum (axis 3)
[167]1924
[169]1925      VectorIterator<Float> itData(valuesIn, axis);
1926      ReadOnlyVectorIterator<Bool> itMask(maskIn, axis);
1927      Float fac = 1.0;
[779]1928      IPosition pos(nAxesSub,0);
[169]1929//
1930      while (!itData.pastEnd()) {
[167]1931
[169]1932// Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor
[167]1933
[518]1934         if (useMask) {
1935            MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector());
1936            fac = 1.0/variance(tmp);
1937         } else {
1938            MaskedArray<Float> tmp(itData.vector(),itMask.vector());
1939            fac = 1.0/variance(tmp);
1940         }
[169]1941
1942// Scale data
1943
[518]1944         itData.vector() *= fac;     // Writes back into 'dataIn'
[167]1945//
[169]1946// Accumulate variance per if/pol/beam averaged over spectrum
1947// This method to get pos2 from itData.pos() is only valid
1948// because the spectral axis is the last one (so we can just
1949// copy the first nAXesSub positions out)
[167]1950
[518]1951         pos = itData.pos().getFirst(nAxesSub);
1952         sumSq(pos) += fac;
[169]1953//
[518]1954         itData.next();
1955         itMask.next();
[169]1956      }
[536]1957   } else if (wtType==TSYS || wtType==TINTSYS) {
[518]1958
1959// We are going to average the data, weighted by 1/Tsys**2 for each pol, beam and IF.
1960// So therefore we need to iterate through by spectrum (axis 3).  Although
1961// Tsys is stored as a vector of length nChan, the values are replicated.
1962// We will take a short cut and just use the value from the first channel
1963// for now.
[779]1964//
[518]1965      VectorIterator<Float> itData(valuesIn, axis);
1966      ReadOnlyVectorIterator<Float> itTSys(tSys, axis);
[779]1967      IPosition pos(nAxesSub,0);
[518]1968//
[536]1969      Float fac = 1.0;
1970      if (wtType==TINTSYS) fac *= interval;
[518]1971      while (!itData.pastEnd()) {
1972         Float t = itTSys.vector()[0];
[536]1973         fac *= 1.0/t/t;
[518]1974
1975// Scale data
1976
1977         itData.vector() *= fac;     // Writes back into 'dataIn'
1978//
1979// Accumulate Tsys  per if/pol/beam averaged over spectrum
1980// This method to get pos2 from itData.pos() is only valid
1981// because the spectral axis is the last one (so we can just
1982// copy the first nAXesSub positions out)
1983
1984         pos = itData.pos().getFirst(nAxesSub);
1985         tSysSqSum(pos) += fac;
1986//
1987         itData.next();
1988         itTSys.next();
1989      }
[169]1990   }
[167]1991
[169]1992// Accumulate sum of (possibly scaled) data
1993
1994   sum += dataIn;
1995
1996// Accumulate Tsys, time, and interval
1997
1998   tSysSum += tSys;
1999   timeSum += time;
2000   intSum += interval;
2001   nAccum += 1;
2002}
2003
2004
[518]2005void SDMath::normalize(MaskedArray<Float>& sum,
2006                       const Array<Float>& sumSq,
2007                       const Array<Float>& tSysSqSum,
2008                       const Array<Float>& nPts,
2009                       Double intSum,
2010                       WeightType wtType, Int axis,
[716]2011                       Int nAxesSub)
[518]2012{
2013   IPosition pos2(nAxesSub,0);
2014//
2015   if (wtType==NONE) {
2016
2017// We just average by the number of points accumulated.
2018// We need to make a MA out of nPts so that no divide by
2019// zeros occur
2020
2021      MaskedArray<Float> t(nPts, (nPts>Float(0.0)));
2022      sum /= t;
2023   } else if (wtType==TINT) {
2024
2025// Average by sum of Tint
2026
2027      sum /= Float(intSum);
2028   } else if (wtType==VAR) {
2029
2030// Normalize each spectrum by sum(1/var) where the variance
2031// is worked out for each spectrum
2032
2033      Array<Float>& data = sum.getRWArray();
2034      VectorIterator<Float> itData(data, axis);
2035      while (!itData.pastEnd()) {
2036         pos2 = itData.pos().getFirst(nAxesSub);
2037         itData.vector() /= sumSq(pos2);
2038         itData.next();
2039      }
[536]2040   } else if (wtType==TSYS || wtType==TINTSYS) {
[779]2041
[536]2042// Normalize each spectrum by sum(1/Tsys**2) (TSYS) or
2043// sum(Tint/Tsys**2) (TINTSYS) where the pseudo
[518]2044// replication over channel for Tsys has been dropped.
2045
2046      Array<Float>& data = sum.getRWArray();
2047      VectorIterator<Float> itData(data, axis);
2048      while (!itData.pastEnd()) {
2049         pos2 = itData.pos().getFirst(nAxesSub);
2050         itData.vector() /= tSysSqSum(pos2);
2051         itData.next();
2052      }
2053   }
2054}
2055
2056
2057
2058
[434]2059void SDMath::setCursorSlice (IPosition& start, IPosition& end, Bool doAll, const SDMemTable& in) const
[169]2060{
[434]2061  const uInt nDim = asap::nAxes;
2062  DebugAssert(nDim==4,AipsError);
[167]2063//
[169]2064  start.resize(nDim);
[434]2065  end.resize(nDim);
2066  if (doAll) {
2067     start = 0;
2068     end(0) = in.nBeam()-1;
2069     end(1) = in.nIF()-1;
2070     end(2) = in.nPol()-1;
2071     end(3) = in.nChan()-1;
2072  } else {
2073     start(0) = in.getBeam();
2074     end(0) = start(0);
[167]2075//
[434]2076     start(1) = in.getIF();
2077     end(1) = start(1);
2078//
2079     start(2) = in.getPol();
2080     end(2) = start(2);
2081//
2082     start(3) = 0;
2083     end(3) = in.nChan()-1;
2084   }
[169]2085}
2086
2087
[518]2088void SDMath::convertWeightString(WeightType& wtType, const String& weightStr,
[716]2089                                 Bool listType)
[169]2090{
2091  String tStr(weightStr);
2092  tStr.upcase();
[518]2093  String msg;
[169]2094  if (tStr.contains(String("NONE"))) {
2095     wtType = NONE;
[518]2096     msg = String("Weighting type selected : None");
[169]2097  } else if (tStr.contains(String("VAR"))) {
2098     wtType = VAR;
[518]2099     msg = String("Weighting type selected : Variance");
[536]2100  } else if (tStr.contains(String("TINTSYS"))) {
2101       wtType = TINTSYS;
2102       msg = String("Weighting type selected : Tint&Tsys");
[518]2103  } else if (tStr.contains(String("TINT"))) {
2104     wtType = TINT;
[519]2105     msg = String("Weighting type selected : Tint");
[169]2106  } else if (tStr.contains(String("TSYS"))) {
2107     wtType = TSYS;
[518]2108     msg = String("Weighting type selected : Tsys");
[169]2109  } else {
[518]2110     msg = String("Weighting type selected : None");
2111     throw(AipsError("Unrecognized weighting type"));
[167]2112  }
[518]2113//
[716]2114  if (listType) pushLog(msg);
[167]2115}
2116
[317]2117
[779]2118void SDMath::convertInterpString(casa::InterpolateArray1D<Double,Float>::InterpolationMethod& type,
[716]2119                                 const casa::String& interp)
[227]2120{
2121  String tStr(interp);
2122  tStr.upcase();
2123  if (tStr.contains(String("NEAR"))) {
[317]2124     type = InterpolateArray1D<Double,Float>::nearestNeighbour;
[227]2125  } else if (tStr.contains(String("LIN"))) {
[317]2126     type = InterpolateArray1D<Double,Float>::linear;
[227]2127  } else if (tStr.contains(String("CUB"))) {
[317]2128     type = InterpolateArray1D<Double,Float>::cubic;
[227]2129  } else if (tStr.contains(String("SPL"))) {
[317]2130     type = InterpolateArray1D<Double,Float>::spline;
[227]2131  } else {
2132    throw(AipsError("Unrecognized interpolation type"));
2133  }
2134}
2135
[185]2136void SDMath::putDataInSDC(SDContainer& sc, const Array<Float>& data,
[779]2137                          const Array<Bool>& mask)
[169]2138{
2139    sc.putSpectrum(data);
2140//
2141    Array<uChar> outflags(data.shape());
2142    convertArray(outflags,!mask);
2143    sc.putFlags(outflags);
2144}
[227]2145
[716]2146Table SDMath::readAsciiFile(const String& fileName) const
[227]2147{
[230]2148   String formatString;
2149   Table tbl = readAsciiTable (formatString, Table::Memory, fileName, "", "", False);
[227]2150   return tbl;
2151}
[230]2152
2153
[234]2154
[480]2155void SDMath::scaleFromAsciiTable(SDMemTable* pTabOut,
2156                                 const SDMemTable& in, const String& fileName,
2157                                 const String& col0, const String& col1,
2158                                 const String& methodStr, Bool doAll,
[716]2159                                 const Vector<Float>& xOut, Bool doTSys)
[230]2160{
2161
2162// Read gain-elevation ascii file data into a Table.
2163
[234]2164  Table geTable = readAsciiFile (fileName);
[230]2165//
[480]2166  scaleFromTable (pTabOut, in, geTable, col0, col1, methodStr, doAll, xOut, doTSys);
[230]2167}
2168
[779]2169void SDMath::scaleFromTable(SDMemTable* pTabOut, const SDMemTable& in,
2170                            const Table& tTable, const String& col0,
[480]2171                            const String& col1,
2172                            const String& methodStr, Bool doAll,
[716]2173                            const Vector<Float>& xOut, Bool doTsys)
[230]2174{
2175
2176// Get data from Table
2177
2178  ROScalarColumn<Float> geElCol(tTable, col0);
2179  ROScalarColumn<Float> geFacCol(tTable, col1);
2180  Vector<Float> xIn = geElCol.getColumn();
2181  Vector<Float> yIn = geFacCol.getColumn();
2182  Vector<Bool> maskIn(xIn.nelements(),True);
2183
2184// Interpolate (and extrapolate) with desired method
2185
[317]2186   InterpolateArray1D<Double,Float>::InterpolationMethod method;
[230]2187   convertInterpString(method, methodStr);
[317]2188   Int intMethod(method);
[230]2189//
2190   Vector<Float> yOut;
2191   Vector<Bool> maskOut;
[779]2192   InterpolateArray1D<Float,Float>::interpolate(yOut, maskOut, xOut,
[317]2193                                                xIn, yIn, maskIn, intMethod,
[230]2194                                                True, True);
[779]2195// Apply
[230]2196
[480]2197   scaleByVector(pTabOut, in, doAll, Float(1.0)/yOut, doTsys);
[234]2198}
2199
2200
[779]2201void SDMath::scaleByVector(SDMemTable* pTabOut, const SDMemTable& in,
[480]2202                           Bool doAll, const Vector<Float>& factor,
[716]2203                           Bool doTSys)
[234]2204{
[270]2205
[434]2206// Set up data slice
[230]2207
2208  IPosition start, end;
[434]2209  setCursorSlice (start, end, doAll, in);
[230]2210
[480]2211// Get Tsys column
2212
2213  const Table& tIn = in.table();
2214  ArrayColumn<Float> tSysCol(tIn, "TSYS");
2215  Array<Float> tSys;
2216
[270]2217// Loop over rows and apply correction factor
[779]2218
[230]2219  const uInt axis = asap::ChanAxis;
2220  for (uInt i=0; i < in.nRow(); ++i) {
2221
2222// Get data
2223
[434]2224     MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
2225     MaskedArray<Float> dataIn2 = dataIn(start,end);  // reference to dataIn
[480]2226//
2227     if (doTSys) {
2228        tSysCol.get(i, tSys);
2229        Array<Float> tSys2 = tSys(start,end) * factor[i];
2230        tSysCol.put(i, tSys);
2231     }
[230]2232
2233// Apply factor
2234
[434]2235     dataIn2 *= factor[i];
[230]2236
2237// Write out
2238
[434]2239     SDContainer sc = in.getSDContainer(i);
2240     putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
[230]2241//
[434]2242     pTabOut->putSDContainer(sc);
[230]2243  }
2244}
2245
[234]2246
[262]2247
2248
[330]2249void SDMath::generateDataDescTable (Matrix<uInt>& ddIdx,
2250                                    SDDataDesc& dDesc,
2251                                    uInt nIF,
2252                                    const SDMemTable& in,
2253                                    const Table& tabIn,
2254                                    const ROScalarColumn<String>& srcCol,
[397]2255                                    const ROArrayColumn<uInt>& fqIDCol,
[716]2256                                    Bool perFreqID)
[330]2257{
2258   const uInt nRows = tabIn.nrow();
2259   ddIdx.resize(nRows,nIF);
[262]2260//
[330]2261   String srcName;
2262   Vector<uInt> freqIDs;
2263   for (uInt iRow=0; iRow<nRows; iRow++) {
2264      srcCol.get(iRow, srcName);
2265      fqIDCol.get(iRow, freqIDs);
2266      const MDirection& dir = in.getDirection(iRow);
2267//
[397]2268      if (perFreqID) {
2269
2270// One entry per source/freqID pair
2271
2272         for (uInt iIF=0; iIF<nIF; iIF++) {
2273            ddIdx(iRow,iIF) = dDesc.addEntry(srcName, freqIDs[iIF], dir, 0);
2274         }
2275      } else {
2276
2277// One entry per source/IF pair.  Hang onto the FreqID as well
2278
2279         for (uInt iIF=0; iIF<nIF; iIF++) {
2280            ddIdx(iRow,iIF) = dDesc.addEntry(srcName, iIF, dir, freqIDs[iIF]);
2281         }
[262]2282      }
2283   }
2284}
[272]2285
[397]2286
2287
2288
2289
[716]2290MEpoch SDMath::epochFromString(const String& str, MEpoch::Types timeRef)
[272]2291{
2292   Quantum<Double> qt;
2293   if (MVTime::read(qt,str)) {
2294      MVEpoch mv(qt);
2295      MEpoch me(mv, timeRef);
2296      return me;
2297   } else {
2298      throw(AipsError("Invalid format for Epoch string"));
2299   }
2300}
2301
2302
2303String SDMath::formatEpoch(const MEpoch& epoch)  const
2304{
2305   MVTime mvt(epoch.getValue());
2306   return mvt.string(MVTime::YMD) + String(" (") + epoch.getRefString() + String(")");
2307}
2308
[294]2309
[309]2310
[779]2311void SDMath::generateFrequencyAligners(PtrBlock<FrequencyAligner<Float>* >& a,
2312                                       const SDDataDesc& dDesc,
2313                                       const SDMemTable& in, uInt nChan,
2314                                       MFrequency::Types system,
2315                                       const MPosition& refPos,
2316                                       const MEpoch& refEpoch,
2317                                       Bool perFreqID)
[294]2318{
[330]2319   for (uInt i=0; i<dDesc.length(); i++) {
[397]2320      uInt ID = dDesc.ID(i);
2321      uInt secID = dDesc.secID(i);
2322      const MDirection& refDir = dDesc.secDir(i);
[330]2323//
[397]2324      if (perFreqID) {
2325
[779]2326// One aligner per source/FreqID pair.
[397]2327
2328         SpectralCoordinate sC = in.getSpectralCoordinate(ID);
2329         a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
2330      } else {
2331
2332// One aligner per source/IF pair.  But we still need the FreqID to
2333// get the right SC.  Hence the messing about with the secondary ID
2334
2335         SpectralCoordinate sC = in.getSpectralCoordinate(secID);
2336         a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
2337      }
[294]2338   }
2339}
[480]2340
[701]2341Vector<uInt> SDMath::getRowRange(const SDMemTable& in) const
[480]2342{
2343   Vector<uInt> range(2);
2344   range[0] = 0;
2345   range[1] = in.nRow()-1;
2346   return range;
2347}
2348
[779]2349
[701]2350Bool SDMath::rowInRange(uInt i, const Vector<uInt>& range) const
[480]2351{
2352   return (i>=range[0] && i<=range[1]);
2353}
[701]2354
Note: See TracBrowser for help on using the repository browser.