[534] | 1 | \documentclass[11pt]{article}
|
---|
| 2 | \usepackage{a4}
|
---|
[763] | 3 | \usepackage{calc}
|
---|
[534] | 4 | \usepackage[dvips]{graphicx}
|
---|
| 5 |
|
---|
| 6 | % Adjust the page size
|
---|
| 7 | \addtolength{\oddsidemargin}{-0.4in}
|
---|
| 8 | \addtolength{\evensidemargin}{+0.4in}
|
---|
| 9 | \addtolength{\textwidth}{+0.8in}
|
---|
| 10 |
|
---|
| 11 | \setlength{\parindent}{0mm}
|
---|
| 12 | \setlength{\parskip}{1ex}
|
---|
| 13 |
|
---|
[763] | 14 | \title{ATNF Spectral Analysis Package\\User Guide }
|
---|
[534] | 15 | \author{Chris Phillips}
|
---|
| 16 |
|
---|
| 17 | \newcommand{\cmd}[1]{{\tt #1}}
|
---|
| 18 |
|
---|
[763] | 19 | \newcommand{\asaprc}[3]{
|
---|
| 20 | \begin{minipage}[t]{45mm}#1\end{minipage}
|
---|
| 21 | \begin{minipage}[t]{30mm}\raggedright #2\end{minipage}\hspace{3mm}
|
---|
| 22 | \begin{minipage}[t]{\textwidth-75mm}#3\end{minipage}
|
---|
| 23 | }
|
---|
| 24 |
|
---|
[534] | 25 | \begin{document}
|
---|
| 26 |
|
---|
| 27 | \maketitle
|
---|
| 28 |
|
---|
| 29 | \section{Introduction}
|
---|
| 30 |
|
---|
[544] | 31 | ASAP is a single dish spectral line processing package currently being
|
---|
| 32 | developed by the ATNF. It is intended to process data from all ATNF
|
---|
[763] | 33 | antennas, and can probably be used for other antennas if they can
|
---|
[544] | 34 | produce ``Single Dish FITS'' format. It is based on the AIPS++
|
---|
| 35 | package.
|
---|
| 36 |
|
---|
[534] | 37 | %\section{Documentation Standards}
|
---|
| 38 |
|
---|
[738] | 39 | %In most of the examples in this document, it has been assumed that the
|
---|
[534] | 40 |
|
---|
[544] | 41 | \section{Installation and Running}
|
---|
[534] | 42 |
|
---|
[738] | 43 | Currently there are installations running on Linux machines at
|
---|
[534] | 44 |
|
---|
| 45 | \begin{itemize}
|
---|
| 46 | \item Epping - use hosts {\tt draco} or {\tt hydra}
|
---|
| 47 | \item Narrabri - use host {\tt kaputar}
|
---|
[537] | 48 | \item Parkes - use host {\tt bourbon}
|
---|
[534] | 49 | \item Mopra - use host {\tt minos}
|
---|
| 50 | \end{itemize}
|
---|
| 51 |
|
---|
[763] | 52 | To start asap log onto one of these Linux hosts and enter
|
---|
[534] | 53 |
|
---|
| 54 | \begin{verbatim}
|
---|
| 55 | > cd /my/data/directory
|
---|
| 56 | > asap
|
---|
| 57 | \end{verbatim}
|
---|
| 58 |
|
---|
[544] | 59 | This starts the ASAP. To quit, you need to type \verb+^+-d
|
---|
| 60 | (control-d).
|
---|
[534] | 61 |
|
---|
| 62 | \section{Interface}
|
---|
| 63 |
|
---|
| 64 | ASAP is written in C++ and python. The user interface uses the
|
---|
| 65 | ``ipython'' interactive shell, which is a simple interactive interface
|
---|
| 66 | to python. The user does not need to understand python to use this,
|
---|
| 67 | but certain aspects python affect what the user can do. The current
|
---|
| 68 | interface is object oriented. In the future, we will build a
|
---|
| 69 | functional (non object oriented) shell on top of this to ease
|
---|
| 70 | interactive use.
|
---|
| 71 |
|
---|
| 72 | \subsection {Integer Indices are 0-relative}
|
---|
| 73 |
|
---|
| 74 | Please note, all integer indices in ASAP and iPython are {\bf 0-relative}.
|
---|
| 75 |
|
---|
| 76 | \subsection{Objects}
|
---|
| 77 |
|
---|
| 78 | The ASAP interface is based around a number of ``objects'' which the
|
---|
| 79 | user deals with. Objects range from the data which have been read from
|
---|
| 80 | disk, to tools used for fitting functions to the data. The following
|
---|
| 81 | main objects are used :
|
---|
| 82 |
|
---|
| 83 | \begin{itemize}
|
---|
[544] | 84 | \item[\cmd{scantable}] The data container (actual spectra and header
|
---|
| 85 | information)
|
---|
| 86 | \item[\cmd{fitter}] A tool used to fit functions to the spectral data
|
---|
| 87 | \item[\cmd{plotter}] A tool used to plot the spectral line data
|
---|
| 88 | \item[\cmd{reader}] A tool which can be used to read data from disks
|
---|
[534] | 89 | into a scantable object.
|
---|
| 90 | \end{itemize}
|
---|
| 91 |
|
---|
[738] | 92 | There can be many objects of the same type. Each object is referred to
|
---|
[534] | 93 | by a variable name made by the user. The name of this variable is not
|
---|
[763] | 94 | important and can be set to whatever the user prefers (i.e. ``s'' and
|
---|
[534] | 95 | ``ParkesHOH-20052002'' are equivalent). However, having a simple and
|
---|
| 96 | consistent naming convention will help you a lot.
|
---|
| 97 |
|
---|
[544] | 98 | \subsection{Member Functions (functions)}
|
---|
[534] | 99 |
|
---|
| 100 | Following the object oriented approach, objects have associated
|
---|
| 101 | ``member functions'' which can either be used to modify the data in
|
---|
| 102 | some way or change global properties of the object. In this document
|
---|
| 103 | member functions will be referred to simply as functions. From the
|
---|
[538] | 104 | command line, the user can execute these functions using the syntax:
|
---|
[534] | 105 | \begin{verbatim}
|
---|
| 106 | ASAP> out = object.function(arguments)
|
---|
| 107 | \end{verbatim}
|
---|
| 108 |
|
---|
| 109 | Where \cmd{out} is the name of the returned variable (could be a new
|
---|
[544] | 110 | scantable object, or a vector of data, or a status return),
|
---|
| 111 | \cmd{object} is the object variable name (set by the user),
|
---|
| 112 | \cmd{function} is the name of the member function and \cmd{arguments}
|
---|
| 113 | is a list of arguments to the function. The arguments can be provided
|
---|
| 114 | either though position or \cmd{name=}. A mix of the two can be used.
|
---|
| 115 | E.g.
|
---|
[534] | 116 |
|
---|
| 117 | \begin{verbatim}
|
---|
| 118 | ASAP> av = scans(msk,weight='tsys')
|
---|
| 119 | ASAP> av = scans(mask=msk,weight='tsys')
|
---|
[763] | 120 | ASAP> av = scans(msk,tsys)
|
---|
[544] | 121 | ASAP> scans.polybaseline(mask=msk, order=0, insitu=True)
|
---|
[534] | 122 | ASAP> scans.polybaseline(msk,0,True)
|
---|
| 123 | ASAP> scans.polybaseline(mask, insitu=True)
|
---|
| 124 | \end{verbatim}
|
---|
| 125 |
|
---|
| 126 | \subsection{Global Functions}
|
---|
| 127 |
|
---|
[544] | 128 | It does not make sense to implement some functions as member
|
---|
| 129 | functions, typically functions which operate on more than one
|
---|
| 130 | scantable (e.g. time averaging of many scans). These functions will
|
---|
| 131 | always be referred to as global functions.
|
---|
[534] | 132 |
|
---|
[538] | 133 | \subsection{Interactive environment}
|
---|
[534] | 134 |
|
---|
[763] | 135 | ipython has a number of useful interactive features and a few things
|
---|
| 136 | to be aware of for the new user.
|
---|
[534] | 137 |
|
---|
| 138 | \subsubsection{String completion}
|
---|
| 139 |
|
---|
| 140 | Tab completion is enabled for all function names. If you type the
|
---|
[544] | 141 | first few letters of a function name, then type {\tt <TAB>} the
|
---|
| 142 | function name will be auto completed if it is un-ambiguous, or a list
|
---|
| 143 | of possibilities will be given. Auto-completion works for the user
|
---|
| 144 | object names as well as function names. It does not work for
|
---|
| 145 | filenames, nor for function arguments.
|
---|
[534] | 146 |
|
---|
| 147 | Example
|
---|
| 148 | \begin{verbatim}
|
---|
| 149 | ASAP> scans = scantable('MyData.rpf')
|
---|
| 150 | ASAP> scans.se<TAB>
|
---|
| 151 | scans.set_cursor scans.set_freqframe scans.set_unit scans.setpol
|
---|
[738] | 152 | scans.set_doppler scans.set_instrument scans.setbeam
|
---|
| 153 | scans.set_fluxunit scans.set_restfreqs scans.setif
|
---|
[534] | 154 | ASAP> scans.set_in<TAB>
|
---|
[774] | 155 | ASAP> scans.set_instrument()
|
---|
[534] | 156 | \end{verbatim}
|
---|
| 157 |
|
---|
[544] | 158 | \subsubsection{Leading Spaces}
|
---|
| 159 |
|
---|
| 160 | Python uses leading space to mark blocks of code. This means that it
|
---|
| 161 | you start a command line with a space, the command generally will
|
---|
| 162 | fail with an syntax error.
|
---|
| 163 |
|
---|
[763] | 164 | \subsubsection{Variable Names}
|
---|
| 165 |
|
---|
| 166 | During normal data processing, the user will have to create named
|
---|
| 167 | variables to hold spectra etc. These must conform to the normal python
|
---|
| 168 | syntax, specifically they cannot contain ``special'' characters such
|
---|
| 169 | as \@ \$ etc and cannot start with a number (but can contain numbers).
|
---|
[767] | 170 | Variable (and function) names are case sensitive.
|
---|
[763] | 171 |
|
---|
[534] | 172 | \subsubsection{Unix Interaction}
|
---|
| 173 |
|
---|
[544] | 174 | Basic unix shell commands (\cmd{pwd}, \cmd{ls}, \cmd{cd} etc) can be
|
---|
| 175 | issued from within ASAP. This allows the user to do things like look
|
---|
| 176 | at files in the current directory. The shell command ``\cmd{cd}''
|
---|
| 177 | works within ASAP, allowing the user to change between data
|
---|
| 178 | directories. Unix programs cannot be run this way, but the shell
|
---|
| 179 | escape ``$!$'' can be used to run arbitrary programs. E.g.
|
---|
[534] | 180 |
|
---|
| 181 | \begin{verbatim}
|
---|
| 182 | ASAP> pwd
|
---|
| 183 | ASAP> ls
|
---|
| 184 | ASAP> ! mozilla&
|
---|
| 185 | \end{verbatim}
|
---|
| 186 |
|
---|
| 187 | \subsection{Help}
|
---|
| 188 |
|
---|
[538] | 189 | ASAP has built in help for all functions. To get a list of functions type:
|
---|
[534] | 190 |
|
---|
[538] | 191 | \begin{verbatim}
|
---|
[774] | 192 | ASAP> commands()
|
---|
[538] | 193 | \end{verbatim}
|
---|
| 194 |
|
---|
| 195 | To get help on specific functions, the built in help needs to be given
|
---|
| 196 | the object and function name. E.g.
|
---|
| 197 |
|
---|
| 198 | \begin{verbatim}
|
---|
| 199 | ASAP> help scantable.get_scan
|
---|
| 200 | ASAP> help scantable.stats
|
---|
| 201 | ASAP> help plotter.plot
|
---|
| 202 | ASAP> help fitter.plot
|
---|
| 203 |
|
---|
| 204 | ASAP> scans = scantable('mydata.asap')
|
---|
| 205 | ASAP> help scans.get_scan # Same as above
|
---|
[544] | 206 | \end{verbatim}
|
---|
[538] | 207 |
|
---|
[544] | 208 | Global functions just need their name
|
---|
[538] | 209 |
|
---|
[544] | 210 | \begin{verbatim}
|
---|
[738] | 211 | ASAP> help average_time
|
---|
[538] | 212 | \end{verbatim}
|
---|
| 213 |
|
---|
| 214 | Note that if you just type \cmd{help} the internal ipython help is
|
---|
| 215 | invoked, which is probably {\em not} what you want. Type \verb+^+-d
|
---|
| 216 | (control-d) to escape from this.
|
---|
| 217 |
|
---|
[738] | 218 | \subsection{Customisation - .asaprc}
|
---|
[534] | 219 |
|
---|
[544] | 220 | ASAP use an \cmd{.asaprc} file to control the user's preference of
|
---|
[538] | 221 | default values for various functions arguments. This includes the
|
---|
[544] | 222 | defaults for arguments such as \cmd{insitu}, scantable \cmd{freqframe}
|
---|
[538] | 223 | and the plotters \cmd{set\_mode} values. The help on individual
|
---|
[544] | 224 | functions says which arguments can be set default values from the
|
---|
[538] | 225 | \cmd{.asaprc} file. To get a sample contents for the \cmd{.asaprc}
|
---|
| 226 | file use then command \cmd{list\_rcparameters}.
|
---|
[534] | 227 |
|
---|
[538] | 228 | Common values include:
|
---|
| 229 | \begin{verbatim}
|
---|
| 230 | # apply operations on the input scantable or return new one
|
---|
| 231 | insitu : False
|
---|
| 232 |
|
---|
[738] | 233 | # default output format when saving scantable
|
---|
[538] | 234 | scantable.save : 'ASAP'
|
---|
| 235 |
|
---|
| 236 | # default frequency frame to set when function
|
---|
| 237 | # scantable.set_freqframe is called
|
---|
| 238 | scantable.freqframe : 'LSRK'
|
---|
| 239 |
|
---|
| 240 | # auto averaging on read
|
---|
| 241 | scantable.autoaverage : True
|
---|
| 242 | \end{verbatim}
|
---|
| 243 |
|
---|
[763] | 244 | For a complete list of \cmd{.asaprc} values, see the appendix.
|
---|
| 245 |
|
---|
[534] | 246 | \section{Scantables}
|
---|
| 247 |
|
---|
| 248 | \subsection {Description}
|
---|
| 249 |
|
---|
| 250 | \subsubsection {Basic Structure}
|
---|
| 251 |
|
---|
| 252 | ASAP data handling works on objects called scantables. A scantable
|
---|
| 253 | holds your data, and also provides functions to operate
|
---|
| 254 | upon it.
|
---|
| 255 |
|
---|
| 256 | The building block of a scantable is an integration, which is a single
|
---|
| 257 | row of a scantable. Each row contains spectra for each beam, IF and
|
---|
| 258 | polarisation. For example Parkes multibeam data would contain many
|
---|
| 259 | beams, one IF and 2-4 polarisations, while the new Mopra 8-GHz
|
---|
| 260 | filterbank will eventually produce one beam, many IFs, and 2-4
|
---|
| 261 | polarisations.
|
---|
| 262 |
|
---|
| 263 | A collection of sequential integrations (rows) for one source is termed
|
---|
| 264 | a scan (and each scan has a unique numeric identifier, the ScanID). A
|
---|
| 265 | scantable is then a collection of one or more scans. If you have
|
---|
| 266 | scan-averaged your data in time, then each scan would hold just one
|
---|
| 267 | (averaged) integration.
|
---|
| 268 |
|
---|
| 269 | Many of the functions which work on scantables can either return a
|
---|
| 270 | new scantable with modified data or change the scantable insitu. Which
|
---|
| 271 | method is used depends on the users preference. The default can be
|
---|
| 272 | changed via the {\tt .asaprc} resource file.
|
---|
| 273 |
|
---|
| 274 | \subsubsection {Contents}
|
---|
| 275 |
|
---|
[537] | 276 | A scantable has header information and data (a scantable is actually an AIPS++
|
---|
| 277 | Table and it is stored in Memory when you are manipulating it with ASAP.
|
---|
[534] | 278 | You can store it to disk and then browse it with the AIPS++
|
---|
[537] | 279 | Table browser if you know how to do that !).
|
---|
[534] | 280 |
|
---|
| 281 | The data are stored in columns (the length of a column is the number of
|
---|
[738] | 282 | rows/integrations of course).
|
---|
[534] | 283 |
|
---|
| 284 | Two important columns are those that describe the frequency setup. We mention
|
---|
[538] | 285 | them explicitly here because you need to be able to understand the presentation
|
---|
[534] | 286 | of the frequency information and possibly how to manipulate it.
|
---|
| 287 |
|
---|
| 288 | These columns are called FreqID and RestFreqID. They contain indices, for
|
---|
| 289 | each IF, pointing into tables with all of the frequency information for that
|
---|
| 290 | integration. More on these below when we discuss the \cmd{summary} function
|
---|
| 291 | in the next subsection.
|
---|
| 292 |
|
---|
| 293 | There are of course many other columns which contain the actual spectra,
|
---|
| 294 | the flags, the Tsys, the source names and so on, but those are a little
|
---|
| 295 | more transparently handled.
|
---|
| 296 |
|
---|
| 297 | \subsection{Management}
|
---|
| 298 |
|
---|
| 299 | During processing it is possible to create a large number of scan
|
---|
| 300 | tables. These all consume memory, so it is best to periodically remove
|
---|
| 301 | unneeded scan tables. Use \cmd{list\_scans} to print a list of all
|
---|
| 302 | scantables and \cmd{del} to remove unneeded ones.
|
---|
| 303 |
|
---|
| 304 | Example:
|
---|
| 305 |
|
---|
| 306 | \begin{verbatim}
|
---|
[774] | 307 | ASAP> list_scans()
|
---|
[534] | 308 | The user created scantables are:
|
---|
| 309 | ['s', 'scans', 'av', 's2', 'ss']
|
---|
| 310 |
|
---|
[738] | 311 | ASAP> del s2
|
---|
[534] | 312 | ASAP> del ss
|
---|
| 313 | \end{verbatim}
|
---|
| 314 |
|
---|
| 315 | There is also a function \cmd{summary} to list a summary of the scantable.
|
---|
| 316 | You will find this very useful.
|
---|
| 317 |
|
---|
| 318 | Example:
|
---|
| 319 |
|
---|
| 320 | \begin{verbatim}
|
---|
| 321 | ASAP> scans = scantable('MyData.rpf')
|
---|
| 322 | ASAP> scans.summary() # Brief listing
|
---|
| 323 | ASAP> scans.summary(verbose=True) # Include frequency information
|
---|
[544] | 324 |
|
---|
| 325 | # Equivalent to brief summary function call
|
---|
[738] | 326 | ASAP> print scan
|
---|
[534] | 327 | \end{verbatim}
|
---|
| 328 |
|
---|
| 329 | Most of what the \cmd{summary} function prints out is obvious. However,
|
---|
[738] | 330 | it also prints out the FreqIDs and RestFreqIDs to which we alluded above.
|
---|
[534] | 331 | These are the last column of the listing.
|
---|
| 332 |
|
---|
| 333 | The summary function gives you a scan-based summary. So it lists all of
|
---|
| 334 | the FreqIDs and RestFreqIDs that it encountered for each scan. If you'd
|
---|
| 335 | like to see what each FreqID actually means, then set the verbose
|
---|
[738] | 336 | argument to True and the frequency table will be listed at the end.
|
---|
[534] | 337 | FreqID of 3 say, refers to the fourth row of the frequency table (ASAP
|
---|
| 338 | is 0-relative). The list of rest frequencies, to which the RestFreqIDs
|
---|
| 339 | refer, is always listed.
|
---|
| 340 |
|
---|
[544] | 341 | %You can copy one scantable to another with the \cmd{copy} function.
|
---|
[534] | 342 |
|
---|
[544] | 343 | %Example:
|
---|
[534] | 344 |
|
---|
[544] | 345 | %\begin{verbatim}
|
---|
| 346 | % ASAP> scans = scantable('MyData.rpf')
|
---|
| 347 | % ASAP> scan2 = scans.copy()
|
---|
| 348 | %\end{verbatim}
|
---|
[534] | 349 |
|
---|
| 350 | \subsection{State}
|
---|
| 351 |
|
---|
| 352 | Each scantable contains "state"; these are properties applying to all
|
---|
[738] | 353 | of the data in the scantable.
|
---|
[534] | 354 |
|
---|
| 355 | Examples are the selection of beam, IF and polarisation, spectral unit
|
---|
[767] | 356 | (e.g. km/s), frequency reference frame (e.g. BARY) and velocity Doppler
|
---|
[534] | 357 | type (e.g. RADIO).
|
---|
| 358 |
|
---|
| 359 | \subsubsection{Units, Doppler and Frequency Reference Frame}
|
---|
| 360 |
|
---|
| 361 | The information describing the frequency setup for each integration
|
---|
| 362 | is stored fundamentally in frequency in the reference frame
|
---|
[738] | 363 | of observation (E.g. TOPO).
|
---|
[534] | 364 |
|
---|
[544] | 365 | When required, this is converted to the desired reference frame
|
---|
| 366 | (e.g. LSRK), Doppler (e.g. OPTICAL) and unit (e.g. km/s) on-the-fly.
|
---|
| 367 | This is important, for example, when you are displaying the data or
|
---|
| 368 | fitting to it.
|
---|
[534] | 369 |
|
---|
| 370 | For units, the user has the choice of frequency, velocity or channel.
|
---|
| 371 | The \cmd{set\_unit} function is used to set the current unit for a
|
---|
| 372 | scantable. All functions will (where relevant) work with the selected
|
---|
| 373 | unit until this changes. This is mainly important for fitting (the fits
|
---|
[738] | 374 | can be computed in any of these units), plotting and mask creation.
|
---|
[534] | 375 |
|
---|
[544] | 376 | The velocity definition can be changed with the \cmd{set\_doppler}
|
---|
| 377 | function, and the frequency reference frame can be changed with the
|
---|
[534] | 378 | \cmd{set\_freqframe} function.
|
---|
| 379 |
|
---|
| 380 | Example usage:
|
---|
| 381 |
|
---|
| 382 | \begin{verbatim}
|
---|
| 383 | ASAP> scans = scantable('2004-11-23_1841-P484.rpf') # Read in the data
|
---|
| 384 | ASAP> scans.set_freqframe('LSRK') # Use the LSR velocity frame
|
---|
| 385 | ASAP> scans.set_unit('km/s') # Use velocity for plots etc from now on
|
---|
| 386 | ASAP> scans.set_doppler('OPTICAL') # Use the optical velocity convention
|
---|
| 387 | ASAP> scans.set_unit('MHz') # Use frequency in MHz from now on
|
---|
| 388 | \end{verbatim}
|
---|
| 389 |
|
---|
| 390 |
|
---|
| 391 | \subsubsection{Rest Frequency}
|
---|
| 392 |
|
---|
| 393 | ASAP reads the line rest frequency from the RPFITS file when reading
|
---|
| 394 | the data. The values stored in the RPFITS file are not always correct
|
---|
| 395 | and so there is a function \cmd{set\_restfreq} to set the rest frequencies.
|
---|
| 396 |
|
---|
| 397 | For each integration, there is a rest-frequency per IF (the rest
|
---|
| 398 | frequencies are just stored as a list with an index into them).
|
---|
| 399 | There are a few ways to set the rest frequencies with this function.
|
---|
| 400 |
|
---|
| 401 | If you specify just one rest frequency, then it is selected for the
|
---|
| 402 | specified source and IF and added to the list of rest frequencies.
|
---|
| 403 |
|
---|
| 404 | \begin{verbatim}
|
---|
[538] | 405 | # Select for specified source/IF
|
---|
[738] | 406 | ASAP> scans.set_restfreqs(freqs=1.667359e9, source='NGC253', theif=0)
|
---|
[538] | 407 |
|
---|
| 408 | # Select for all sources and IFs
|
---|
[738] | 409 | ASAP> scans.set_restfreqs(freqs=1.667359e9)
|
---|
[534] | 410 | \end{verbatim}
|
---|
| 411 |
|
---|
| 412 |
|
---|
| 413 | If you specify a list of frequencies, then it must be of length the
|
---|
| 414 | number of IFs. Regardless of the source, the rest frequency will be set
|
---|
| 415 | for each IF to the corresponding value in the provided list. The
|
---|
| 416 | internally stored list of rest frequencies will be replaced by this
|
---|
| 417 | list.
|
---|
| 418 |
|
---|
| 419 |
|
---|
| 420 | \begin{verbatim}
|
---|
[763] | 421 | # Set rest frequency for all IFs
|
---|
| 422 | ASAP> scans.set_restfreqs(freqs=[1.6654018e9,1.667359e9,])
|
---|
[538] | 423 |
|
---|
[534] | 424 | \end{verbatim}
|
---|
| 425 |
|
---|
| 426 | In both of the above modes, you can also specify the rest frequencies via
|
---|
| 427 | names in a known list rather than by their values.
|
---|
| 428 |
|
---|
| 429 | Examples:
|
---|
| 430 |
|
---|
| 431 | \begin{verbatim}
|
---|
| 432 | ASAP> scans.lines() # Print list of known lines
|
---|
| 433 | ASAP> scans.set_restfreqs(lines=['OH1665','OH1667'])
|
---|
| 434 | \end{verbatim}
|
---|
| 435 |
|
---|
| 436 |
|
---|
| 437 | \subsection{Data Selection}
|
---|
| 438 |
|
---|
| 439 | Data selection is currently fairly limited. This will be improved in
|
---|
[738] | 440 | the future.
|
---|
[534] | 441 |
|
---|
| 442 |
|
---|
| 443 | \subsubsection{Cursor}
|
---|
| 444 |
|
---|
| 445 | Generally the user will want to run functions on all rows in a
|
---|
| 446 | scantable. This allows very fast reduction of data. There are situations
|
---|
| 447 | when functions should only operate on specific elements of the spectra. This
|
---|
| 448 | is handled by the scantable cursor, which allows the user to select a
|
---|
| 449 | single beam, IF and polarisation combination.
|
---|
| 450 |
|
---|
| 451 | Example :
|
---|
| 452 |
|
---|
| 453 | \begin{verbatim}
|
---|
| 454 | ASAP> scans.set_cursor(0,2,1) # beam, IF, pol
|
---|
| 455 | ASAP> scans.smooth(allaxes=F) # in situ by default or .aipsrc
|
---|
| 456 | \end{verbatim}
|
---|
| 457 |
|
---|
| 458 | \subsubsection{Row number}
|
---|
| 459 |
|
---|
| 460 | Most functions work on all rows of a scan table. Exceptions are the
|
---|
| 461 | fitter and plotter. If you wish to only operate on a selected set of
|
---|
[538] | 462 | scantable rows, use the \cmd{get\_scan} function to copy the rows into
|
---|
[534] | 463 | a new scantable.
|
---|
| 464 |
|
---|
| 465 | \subsubsection{Allaxes}
|
---|
| 466 |
|
---|
| 467 | Many functions have an \cmd{allaxes} option which controls whether the
|
---|
| 468 | function will operate on all elements within a scantable row, or just
|
---|
| 469 | those selected with the current cursor. The default is taken from the
|
---|
| 470 | users {\tt .asaprc} file.
|
---|
| 471 |
|
---|
| 472 | \subsubsection{Masks}
|
---|
| 473 |
|
---|
| 474 | Many tasks (fitting, baseline subtraction, statistics etc) should only
|
---|
| 475 | be run on range of channels. Depending on the current ``unit'' setting
|
---|
| 476 | this range is set directly as channels, velocity or frequency
|
---|
| 477 | ranges. Internally these are converted into a simple boolean mask for
|
---|
| 478 | each channel of the abscissa. This means that if the unit setting is
|
---|
| 479 | later changed, previously created mask are still valid. (This is not
|
---|
| 480 | true for functions which change the shape or shift the frequency axis).
|
---|
| 481 | You create masks with the function \cmd{create\_mask} and this specified
|
---|
| 482 | the channels to be included in the selection.
|
---|
| 483 |
|
---|
| 484 | When setting the mask in velocity, the conversion from velocity
|
---|
| 485 | to channels is based on the current cursor setting, selected row and
|
---|
[544] | 486 | selected frequency reference frame.
|
---|
[534] | 487 |
|
---|
| 488 | Example :
|
---|
| 489 | \begin{verbatim}
|
---|
| 490 |
|
---|
| 491 | # Select channel range for baselining
|
---|
| 492 | ASAP> scans.set_unit('channels')
|
---|
[544] | 493 | ASAP> msk = scans.create_mask([100,400],[600,800])
|
---|
[738] | 494 |
|
---|
[534] | 495 | # Select velocity range for fitting
|
---|
| 496 | ASAP> scans.set_unit('km/s')
|
---|
[544] | 497 | ASAP> msk = scans.create_mask([-30,-10])
|
---|
[534] | 498 | \end{verbatim}
|
---|
| 499 |
|
---|
[544] | 500 | Sometimes it is more convenient to specify the channels to be
|
---|
| 501 | excluded, rather included. You can do this with the ``invert''
|
---|
| 502 | argument.
|
---|
[534] | 503 |
|
---|
| 504 | Example :
|
---|
| 505 | \begin{verbatim}
|
---|
| 506 | ASAP> scans.set_unit('channels')
|
---|
[738] | 507 | ASAP> msk = scans.create_mask([0,100],[900-1023], invert=True)
|
---|
[534] | 508 | \end{verbatim}
|
---|
| 509 |
|
---|
[544] | 510 | By default \cmd{create\_mask} uses the frequency setup of the first row
|
---|
| 511 | to convert velocities into a channel mask. If the rows in the data
|
---|
| 512 | cover different velocity ranges, the scantable row to use should be
|
---|
| 513 | specified:
|
---|
| 514 |
|
---|
| 515 | \begin{verbatim}
|
---|
| 516 | ASAP> scans.set_unit('km/s')
|
---|
| 517 | ASAP> msk = q.create_mask([-30,-10], row=5)
|
---|
| 518 | \end{verbatim}
|
---|
| 519 |
|
---|
[534] | 520 | Because the mask is stored in a simple python variable, the users is
|
---|
| 521 | able to combine masks using simple arithmetic. To create a mask
|
---|
| 522 | excluding the edge channels, a strong maser feature and a birdie in
|
---|
| 523 | the middle of the band:
|
---|
| 524 |
|
---|
| 525 | \begin{verbatim}
|
---|
| 526 | ASAP> scans.set_unit('channels')
|
---|
| 527 | ASAP> msk1 = q.create_mask([0,100],[511,511],[900,1023],invert=True)
|
---|
| 528 | ASAP> scans.set_unit('km/s')
|
---|
| 529 | ASAP> msk2 = q.create_mask([-20,-10],invert=True)
|
---|
| 530 |
|
---|
| 531 | ASAP> mask = msk1 and msk2
|
---|
| 532 | \end{verbatim}
|
---|
| 533 |
|
---|
| 534 |
|
---|
| 535 | \section{Data Input}
|
---|
| 536 |
|
---|
| 537 | Data can be loaded in one of two ways; using the reader object or via
|
---|
| 538 | the scantable constructor. The scantable method is simpler but the
|
---|
| 539 | reader allow the user more control on what is read.
|
---|
| 540 |
|
---|
| 541 | \subsection{Scantable constructor}
|
---|
| 542 |
|
---|
| 543 | This loads all of the data from filename into the scantable object scans
|
---|
| 544 | and averages all the data within a scan (i.e. the resulting scantable
|
---|
| 545 | will have one row per scan). The recognised input file formats are
|
---|
| 546 | RPFITS, SDFITS (singledish fits), ASAP's scantable format and aips++
|
---|
[738] | 547 | MeasurementSet2 format.
|
---|
[534] | 548 |
|
---|
| 549 |
|
---|
| 550 | Example usage:
|
---|
| 551 |
|
---|
| 552 | \begin{verbatim}
|
---|
| 553 | ASAP> scan = scantable('2004-11-23_1841-P484.rpf')
|
---|
[544] | 554 |
|
---|
| 555 | # Don't scan average the data
|
---|
| 556 | ASAP> scan = scantable('2004-11-23_1841-P484.rpf', average=False)
|
---|
[534] | 557 | \end{verbatim}
|
---|
| 558 |
|
---|
| 559 |
|
---|
| 560 | \subsection{Reader object}
|
---|
| 561 |
|
---|
| 562 | For more control when reading data into ASAP, the reader object should
|
---|
| 563 | be used. This has the option of only reading in a range of integrations
|
---|
| 564 | and does not perform any scan averaging of the data, allowing analysis
|
---|
| 565 | of the individual integrations. Note that due to limitation of the
|
---|
| 566 | RPFITS library, only one reader object can be open at one time reading
|
---|
| 567 | RPFITS files. To read multiple RPFITS files, the old reader must be
|
---|
| 568 | destroyed before the new file is opened. However, multiple readers can
|
---|
[738] | 569 | be created and attached to SDFITS files.
|
---|
[534] | 570 |
|
---|
| 571 |
|
---|
| 572 | Example usage:
|
---|
| 573 |
|
---|
| 574 | \begin{verbatim}
|
---|
| 575 | ASAP> r = reader('2003-03-16_082048_t0002.rpf')
|
---|
[774] | 576 | ASAP> r.summary()
|
---|
[534] | 577 | ASAP> scan = r.read()
|
---|
| 578 | ASAP> s = r.read(range(100)) # To read in the first 100 integrations
|
---|
| 579 | ASAP> del r
|
---|
| 580 | \end{verbatim}
|
---|
| 581 |
|
---|
| 582 | \section{Basic Processing}
|
---|
| 583 |
|
---|
| 584 | In the following section, a simple data reduction to form a quotient
|
---|
[544] | 585 | spectrum of a single source is followed. It has been assume that the
|
---|
| 586 | \cmd{.asaprc} file has {\em not} been used to change the \cmd{insitu}
|
---|
| 587 | default value from \cmd{True}.
|
---|
[534] | 588 |
|
---|
| 589 | %\subsection{Editing}
|
---|
| 590 |
|
---|
| 591 | %How and when?
|
---|
[738] | 592 | \subsection{Auto quotient}
|
---|
[763] | 593 | Quotients can be computed ``automatically''. This requires the data to
|
---|
| 594 | have matching source/reference pairs or one reference for multiple
|
---|
[767] | 595 | sources. Auto quotient assumes reference scans have a trailing ``\_R''
|
---|
| 596 | in the source name for data from Parkes and Mopra, and a trailing
|
---|
| 597 | ``e'' or ``w'' for data fro, Tidbinbilla.
|
---|
[534] | 598 |
|
---|
[738] | 599 | \begin{verbatim}
|
---|
| 600 | ASAP> q = s.auto_quotient()
|
---|
| 601 | \end{verbatim}
|
---|
| 602 |
|
---|
| 603 | If this is not sufficient the following alternative method can be used.
|
---|
| 604 |
|
---|
[534] | 605 | \subsection{Separate reference and source observations}
|
---|
| 606 |
|
---|
| 607 | Most data from ATNF observatories distinguishes on and off source data
|
---|
| 608 | using the file name. This makes it easy to create two scantables with
|
---|
| 609 | the source and reference data. As long as there was exactly one
|
---|
| 610 | reference observation for each on source observation for following
|
---|
| 611 | method will work.
|
---|
| 612 |
|
---|
| 613 | For Mopra and Parkes data:
|
---|
| 614 | \begin{verbatim}
|
---|
| 615 | ASAP> r = scans.get_scan('*_R')
|
---|
| 616 | ASAP> s = scans.get_scan('*_S')
|
---|
| 617 | \end{verbatim}
|
---|
| 618 |
|
---|
| 619 | For Tidbinbilla data
|
---|
| 620 | \begin{verbatim}
|
---|
| 621 | ASAP> r = scans.get_scan('*_[ew]')
|
---|
| 622 | ASAP> s = scans.get_scan('*_[^ew]')
|
---|
| 623 | \end{verbatim}
|
---|
| 624 |
|
---|
| 625 | \subsection{Make the quotient spectra}
|
---|
| 626 |
|
---|
| 627 | Use the quotient function
|
---|
| 628 |
|
---|
| 629 | \begin{verbatim}
|
---|
| 630 | ASAP> q = s.quotient(r)
|
---|
| 631 | \end{verbatim}
|
---|
| 632 |
|
---|
| 633 | This uses the rows in scantable \cmd{r} as reference spectra for the
|
---|
| 634 | rows in scantable \cmd{s}. Scantable \cmd{r} must have either 1 row
|
---|
| 635 | (which is applied to all rows in \cmd{s}) or both scantables must have
|
---|
| 636 | the same number of rows. By default the quotient spectra is calculated
|
---|
[544] | 637 | to preserve continuum emission. If you wish to remove the continuum
|
---|
[534] | 638 | contribution, use the \cmd{preserve} argument:
|
---|
| 639 |
|
---|
| 640 | \begin{verbatim}
|
---|
| 641 | ASAP> q = s.quotient(r, preserve=True)
|
---|
| 642 | \end{verbatim}
|
---|
| 643 |
|
---|
| 644 | \subsection{Time average separate scans}
|
---|
| 645 |
|
---|
| 646 | If you have observed the source with multiple source/reference cycles you
|
---|
| 647 | will want to scan-average the quotient spectra together.
|
---|
| 648 |
|
---|
| 649 | \begin{verbatim}
|
---|
| 650 | ASAP> av = average_time(q)
|
---|
| 651 | \end{verbatim}
|
---|
| 652 |
|
---|
[544] | 653 | If for some you want to average multiple sets of scantables together
|
---|
| 654 | you can:
|
---|
[534] | 655 |
|
---|
| 656 | \begin{verbatim}
|
---|
| 657 | ASAP> av = average_time(q1, q2, q3)
|
---|
| 658 | \end{verbatim}
|
---|
| 659 |
|
---|
[544] | 660 | The default is to use integration time weighting. The alternative is
|
---|
[767] | 661 | to use none, variance, Tsys weighting or Tsys \& integration time.
|
---|
[534] | 662 |
|
---|
[544] | 663 | \begin{verbatim}
|
---|
| 664 | ASAP> av = average_time(q, weight='tintsys')
|
---|
| 665 | \end{verbatim}
|
---|
| 666 |
|
---|
[534] | 667 | To use variance based weighting, you need to supply a mask saying which
|
---|
| 668 | channel range you want it to calculate the variance from.
|
---|
| 669 |
|
---|
| 670 | \begin{verbatim}
|
---|
[544] | 671 | ASAP> msk = scans.create_mask([200,400],[600,800])
|
---|
| 672 | ASAP> av = average_time(scans, mask=msk, weight='var')
|
---|
[534] | 673 | \end{verbatim}
|
---|
| 674 |
|
---|
| 675 | \subsection{Baseline fitting}
|
---|
| 676 |
|
---|
| 677 | To make a baseline fit, you must first create a mask of channels to
|
---|
[738] | 678 | use in the baseline fit.
|
---|
[534] | 679 |
|
---|
| 680 | \begin{verbatim}
|
---|
| 681 | ASAP> msk = scans.create_mask([100,400],[600,900])
|
---|
[738] | 682 | ASAP> scans.poly_baseline(msk, 1)
|
---|
[534] | 683 | \end{verbatim}
|
---|
| 684 |
|
---|
| 685 | This will fit a first order polynomial to the selected channels and subtract
|
---|
| 686 | this polynomial from the full spectra.
|
---|
| 687 |
|
---|
| 688 | \subsubsection{Auto-baselining}
|
---|
| 689 |
|
---|
| 690 | The function \cmd{auto\_poly\_baseline} can be used to automatically
|
---|
[767] | 691 | baseline your data without having to specify channel ranges for the
|
---|
| 692 | line free data. It automatically figures out the line-free emission
|
---|
| 693 | and fits a polynomial baseline to that data. The user can use masks to
|
---|
| 694 | fix the range of channels or velocity range for the fit as well as
|
---|
| 695 | mark the band edge as invalid.
|
---|
[534] | 696 |
|
---|
| 697 | Simple example
|
---|
| 698 |
|
---|
| 699 | \begin{verbatim}
|
---|
| 700 | ASAP> scans.auto_poly_baseline(order=2,threshold=5)
|
---|
| 701 | \end{verbatim}
|
---|
| 702 |
|
---|
| 703 | \cmd{order} is the polynomial order for the fit. \cmd{threshold} is
|
---|
| 704 | the SNR threshold to use to deliminate line emission from
|
---|
[548] | 705 | signal. Generally the value of threshold is not too critical, however
|
---|
| 706 | making this too large will compromise the fit (as it will include
|
---|
| 707 | strong line features) and making it too small will mean it cannot find
|
---|
| 708 | enough line free channels.
|
---|
[534] | 709 |
|
---|
[548] | 710 |
|
---|
[534] | 711 | Other examples:
|
---|
| 712 |
|
---|
| 713 | \begin{verbatim}
|
---|
| 714 | # Don't try and fit the edge of the bandpass which is noisier
|
---|
| 715 | ASAP> scans.auto_poly_baseline(edge=(500,450),order=3,threshold=3)
|
---|
| 716 |
|
---|
| 717 | # Only fit a given region around the line
|
---|
| 718 | ASAP> scans.set_unit('km/s')
|
---|
| 719 | ASAP> msk = scans.create_mask((-60,-20))
|
---|
| 720 | ASAP> scans.auto_poly_baseline(mask=msk,order=3,threshold=3)
|
---|
| 721 |
|
---|
| 722 | \end{verbatim}
|
---|
| 723 |
|
---|
| 724 | \subsection{Average the polarisations}
|
---|
| 725 |
|
---|
| 726 | If you are just interested in the highest SNR for total intensity you
|
---|
| 727 | will want to average the parallel polarisations together.
|
---|
| 728 |
|
---|
| 729 | \begin{verbatim}
|
---|
| 730 | ASAP> scans.average_pol()
|
---|
| 731 | \end{verbatim}
|
---|
| 732 |
|
---|
| 733 | \subsection{Calibration}
|
---|
| 734 |
|
---|
| 735 | For most uses, calibration happens transparently as the input data
|
---|
| 736 | contains the Tsys measurements taken during observations. The nominal
|
---|
| 737 | ``Tsys'' values may be in Kelvin or Jansky. The user may wish to
|
---|
| 738 | supply a Tsys correction or apply gain-elevation and opacity
|
---|
| 739 | corrections.
|
---|
| 740 |
|
---|
| 741 | \subsubsection{Brightness Units}
|
---|
| 742 |
|
---|
[767] | 743 | RPFITS files do not contain any information as to whether the telescope
|
---|
[534] | 744 | calibration was in units of Kelvin or Janskys. On reading the data a
|
---|
| 745 | default value is set depending on the telescope and frequency of
|
---|
| 746 | observation. If this default is incorrect (you can see it in the
|
---|
| 747 | listing from the \cmd{summary} function) the user can either override
|
---|
| 748 | this value on reading the data or later. E.g:
|
---|
| 749 |
|
---|
| 750 | \begin{verbatim}
|
---|
| 751 | ASAP> scans = scantable(('2004-11-23_1841-P484.rpf', unit='Jy')
|
---|
| 752 | # Or in two steps
|
---|
| 753 | ASAP> scans = scantable(('2004-11-23_1841-P484.rpf')
|
---|
| 754 | ASAP> scans.set_fluxunit('Jy)
|
---|
| 755 | \end{verbatim}
|
---|
| 756 |
|
---|
| 757 | \subsubsection{Tsys scaling}
|
---|
| 758 |
|
---|
| 759 | Sometime the nominal Tsys measurement at the telescope is wrong due to
|
---|
| 760 | an incorrect noise diode calibration. This can easily be corrected for
|
---|
| 761 | with the scale function. By default, \cmd{scale} only scans the
|
---|
| 762 | spectra and not the corresponding Tsys.
|
---|
| 763 |
|
---|
| 764 | \begin{verbatim}
|
---|
[738] | 765 | ASAP> scans.scale(1.05, tsys=True)
|
---|
[534] | 766 | \end{verbatim}
|
---|
| 767 |
|
---|
| 768 | \subsubsection{Unit Conversion}
|
---|
| 769 |
|
---|
| 770 | To convert measurements in Kelvin to Jy (and vice versa) the global
|
---|
| 771 | function \cmd{convert\_flux} is needed. This converts and scales the data
|
---|
| 772 | from K to Jy or vice-versa depending on what the current brightness unit is
|
---|
| 773 | set to. The function knows the basic parameters for some frequencies
|
---|
| 774 | and telescopes, but the user may need to supply the aperture
|
---|
| 775 | efficiency, telescope diameter or the Jy/K factor.
|
---|
| 776 |
|
---|
| 777 | \begin{verbatim}
|
---|
[774] | 778 | ASAP> scans.convert_flux() # If efficency known
|
---|
[534] | 779 | ASAP> scans.convert_flux(eta=0.48) # If telescope diameter known
|
---|
| 780 | ASAP> scans.convert_flux(eta=0.48,d=35) # Unknown telescope
|
---|
| 781 | ASAP> scans.convert_flux(jypk=15) # Alternative
|
---|
| 782 | \end{verbatim}
|
---|
| 783 |
|
---|
| 784 | \subsubsection{Gain-Elevation and Opacity Corrections}
|
---|
| 785 |
|
---|
| 786 | As higher frequencies (particularly $>$20~GHz) it is important to make
|
---|
[738] | 787 | corrections for atmospheric opacity and gain-elevation effects.
|
---|
[534] | 788 |
|
---|
[774] | 789 | Note that currently the elevation is not written correctly into
|
---|
[763] | 790 | Tidbinbilla rpfits files. This means that gain-elevation and opacity
|
---|
[774] | 791 | corrections will not work unless these get recalculated.
|
---|
[763] | 792 |
|
---|
[774] | 793 | \begin{verbatim}
|
---|
| 794 | ASAP> scans.recalc_azel() # recalculate az/el based on pointing
|
---|
| 795 | \end{verbatim}
|
---|
| 796 |
|
---|
| 797 |
|
---|
[544] | 798 | Gain-elevation curves for some telescopes and frequencies are known to
|
---|
| 799 | ASAP (currently only for Tidbinbilla at 20~GHz). In these cases making
|
---|
[534] | 800 | gain-corrections is simple. If the gain curve for your data is not
|
---|
[544] | 801 | known, the user can supply either a gain polynomial or text file
|
---|
[534] | 802 | tabulating gain factors at a range of elevations (see \cmd{help
|
---|
[544] | 803 | scantable.gain\_el}).
|
---|
[534] | 804 |
|
---|
| 805 | Examples:
|
---|
| 806 |
|
---|
| 807 | \begin{verbatim}
|
---|
| 808 | ASAP> scans.gain_el() # If gain table known
|
---|
| 809 | ASAP> scans.gain_el(poly=[3.58788e-1,2.87243e-2,-3.219093e-4])
|
---|
| 810 | \end{verbatim}
|
---|
| 811 |
|
---|
| 812 | Opacity corrections can be made with the global function
|
---|
| 813 | \cmd{opacity}. This should work on all telescopes as long as a
|
---|
[544] | 814 | measurement of the opacity factor was made during the observation.
|
---|
[534] | 815 |
|
---|
| 816 | \begin{verbatim}
|
---|
| 817 | ASAP> scans.opacity(0.083)
|
---|
| 818 | \end{verbatim}
|
---|
| 819 |
|
---|
| 820 | Note that at 3~mm Mopra uses a paddle wheel for Tsys calibration,
|
---|
| 821 | which takes opacity effects into account (to first order). ASAP
|
---|
[544] | 822 | opacity corrections should not be used for Mopra 3-mm data.
|
---|
[534] | 823 |
|
---|
| 824 | \subsection{Frequency Frame Alignment}
|
---|
| 825 |
|
---|
[544] | 826 | When time averaging a series of scans together, it is possible that
|
---|
| 827 | the velocity scales are not exactly aligned. This may be for many
|
---|
| 828 | reasons such as not Doppler tracking the observations, errors in the
|
---|
| 829 | Doppler tracking etc. This mostly affects very long integrations or
|
---|
| 830 | integrations averaged together from different days. Before averaging
|
---|
| 831 | such data together, they should be frequency aligned using
|
---|
| 832 | \cmd{freq\_align}.
|
---|
[534] | 833 |
|
---|
| 834 | E.g.:
|
---|
| 835 |
|
---|
| 836 | \begin{verbatim}
|
---|
| 837 | ASAP> scans.freq_align()
|
---|
| 838 | ASAP> av = average_time(scans)
|
---|
| 839 | \end{verbatim}
|
---|
| 840 |
|
---|
| 841 | \cmd{freq\_align} has two modes of operations controlled by the
|
---|
| 842 | \cmd{perif} argument. By default it will align each source and freqid
|
---|
| 843 | separately. This is needed for scan tables containing multiple
|
---|
[763] | 844 | sources. However if scan-based Doppler tracking has been made at the
|
---|
| 845 | observatory, each row will have a different freqid. In these cases run
|
---|
| 846 | with \cmd{perif=True} and all rows of a source will be aligned to the
|
---|
| 847 | same frame. In general \cmd{perif=True} will be needed for most
|
---|
[534] | 848 | observations as Doppler tracking of some form is made at Parkes, Tid
|
---|
| 849 | and Mopra.
|
---|
| 850 |
|
---|
| 851 | \begin{verbatim}
|
---|
| 852 | ASAP> scans.freq_align(perif=True)
|
---|
| 853 | \end{verbatim}
|
---|
| 854 |
|
---|
| 855 | To average together data taken on different days, which are in
|
---|
| 856 | different scantables, each scantable must aligned to a common
|
---|
| 857 | reference time then the scantables averaged. The simplest way of
|
---|
| 858 | doing this is to allow ASAP to choose the reference time for the first
|
---|
[738] | 859 | scantable then using this time for the subsequent scantables.
|
---|
[534] | 860 |
|
---|
| 861 | \begin{verbatim}
|
---|
| 862 | ASAP> scans1.freq_align() # Copy the refeference Epoch from the output
|
---|
| 863 | ASAP> scans2.freq_align(reftime='2004/11/23/18:43:35')
|
---|
| 864 | ASAP> scans3.freq_align(reftime='2004/11/23/18:43:35')
|
---|
| 865 | ASAP> av = average_time(scans1, scans2, scans3)
|
---|
| 866 | \end{verbatim}
|
---|
| 867 |
|
---|
| 868 | \section{Scantable manipulation}
|
---|
| 869 |
|
---|
| 870 | While it is very useful to have many independent sources within one
|
---|
| 871 | scantable, it is often inconvenient for data processing. The
|
---|
| 872 | \cmd{get\_scan} function can be used to create a new scantable with a
|
---|
| 873 | selection of scans from a scantable. The selection can either be on
|
---|
| 874 | the source name, with simple wildcard matching or set of scan ids.
|
---|
| 875 |
|
---|
| 876 | For example:
|
---|
| 877 |
|
---|
| 878 | \begin{verbatim}
|
---|
| 879 | ASAP> ss = scans.get_scan(10) # Get the 11th scan (zero based)
|
---|
| 880 | ASAP> ss = scans.get_scan(range(10)) # Get the first 10 scans
|
---|
[538] | 881 | ASAP> ss = scans.get_scan(range(10,20)) # Get the next 10 scans
|
---|
[534] | 882 | ASAP> ss = scans.get_scan([2,4,6,8,10]) # Get a selection of scans
|
---|
| 883 |
|
---|
| 884 | ASAP> ss = scans.get_scan('345p407') # Get a specific source
|
---|
| 885 | ASAP> ss = scans.get_scan('345*') # Get a few sources
|
---|
| 886 |
|
---|
| 887 | ASAP> r = scans.get_scan('*_R') # Get all reference sources (Parkes/Mopra)
|
---|
| 888 | ASAP> s = scans.get_scan('*_S') # Get all program sources (Parkes/Mopra)
|
---|
| 889 | ASAP> r = scans.get_scan('*_[ew]') # Get all reference sources (Tid)
|
---|
| 890 | ASAP> s = scans.get_scan('*_[^ew]') # Get all program sources (Tid)
|
---|
| 891 |
|
---|
| 892 | \end{verbatim}
|
---|
| 893 |
|
---|
| 894 | To copy a scantable the following does not work:
|
---|
| 895 |
|
---|
| 896 | \begin{verbatim}
|
---|
| 897 | ASAP> ss = scans
|
---|
| 898 | \end{verbatim}
|
---|
| 899 |
|
---|
[544] | 900 | as this just creates a reference to the original scantable. Any
|
---|
| 901 | changes made to \cmd{ss} are also seen in \cmd{scans}. To duplicate a
|
---|
[534] | 902 | scantable, use the copy function.
|
---|
| 903 |
|
---|
| 904 | \begin{verbatim}
|
---|
[774] | 905 | ASAP> ss = scans.copy()
|
---|
[534] | 906 | \end{verbatim}
|
---|
| 907 |
|
---|
| 908 | \section{Data Output}
|
---|
| 909 |
|
---|
| 910 | ASAP can save scantables in a variety of formats, suitable for reading
|
---|
| 911 | into other packages. The formats are:
|
---|
| 912 |
|
---|
| 913 | \begin{itemize}
|
---|
| 914 | \item[ASAP] This is the internal format used for ASAP. It is the only
|
---|
[544] | 915 | format that allows the user to restore the data, fits etc. without
|
---|
| 916 | loosing any information. As mentioned before, the ASAP scantable is
|
---|
| 917 | an AIPS++ Table (a memory-based table). This function just converts
|
---|
| 918 | it to a disk-based Table. You can the access that Table with the
|
---|
| 919 | AIPS++ Table browser or any other AIPS++ tool.
|
---|
[534] | 920 |
|
---|
[544] | 921 | \item[SDFITS] The Single Dish FITS format. This format was designed to
|
---|
| 922 | for interchange between packages, but few packages actually can read
|
---|
| 923 | it.
|
---|
[534] | 924 |
|
---|
| 925 | \item[FITS] This uses simple ``image'' fits to save the data, each row
|
---|
[544] | 926 | being written to a separate fits file. This format is suitable for
|
---|
| 927 | importing the data into CLASS.
|
---|
[534] | 928 |
|
---|
| 929 | \item[ASCII] A simple text based format suitable for the user to
|
---|
| 930 | processing using Perl or, Python, gnuplot etc.
|
---|
| 931 |
|
---|
| 932 | \item[MS2] Saves the data in an aips++ MeasurementSet V2 format.
|
---|
| 933 | You can also access this with the Table browser and other AIPS++
|
---|
| 934 | tools.
|
---|
| 935 |
|
---|
| 936 | \end{itemize}
|
---|
| 937 |
|
---|
[738] | 938 | The default output format can be set in the users {\tt .asaprc} file.
|
---|
[534] | 939 | Typical usages are:
|
---|
| 940 |
|
---|
| 941 | \begin{verbatim}
|
---|
| 942 | ASAP> scans.save('myscans') # Save in default format
|
---|
| 943 | ASAP> scans.save('myscans', 'FITS') # Save as FITS for exporting into CLASS
|
---|
| 944 |
|
---|
| 945 | ASAP> scans.save('myscans', stokes=True) # Convert raw polarisations into Stokes
|
---|
| 946 | ASAP> scans.save('myscans', overwrite=True) # Overwrite an existing file
|
---|
| 947 | \end{verbatim}
|
---|
| 948 |
|
---|
| 949 |
|
---|
| 950 | \section{Plotter}
|
---|
| 951 |
|
---|
[763] | 952 | Scantable spectra can be plotted at any time. An asapplotter object is
|
---|
[534] | 953 | used for plotting, meaning multiple plot windows can be active at the
|
---|
| 954 | same time. On start up a default asapplotter object is created called
|
---|
| 955 | ``plotter''. This would normally be used for standard plotting.
|
---|
| 956 |
|
---|
[538] | 957 | The plotter, optionally, will run in a multipanel mode and contain
|
---|
[534] | 958 | multiple plots per panel. The user must tell the plotter how they want
|
---|
| 959 | the data distributed. This is done using the set\_mode function. The
|
---|
| 960 | default can be set in the users {\tt .asaprc} file. The units (and frame
|
---|
[538] | 961 | etc) of the abscissa will be whatever has previously been set by
|
---|
| 962 | \cmd{set\_unit}, \cmd{set\_freqframe} etc.
|
---|
[534] | 963 |
|
---|
| 964 | Typical plotter usage would be:
|
---|
| 965 |
|
---|
| 966 | \begin{verbatim}
|
---|
| 967 | ASAP> scans.set_unit('km/s')
|
---|
| 968 | ASAP> plotter.set_mode(stacking='p',panelling='t')
|
---|
| 969 | ASAP> plotter.plot(scans)
|
---|
| 970 | \end{verbatim}
|
---|
| 971 |
|
---|
| 972 | This will plot multiple polarisation within each plot panel and each
|
---|
[544] | 973 | scan row in a separate panel.
|
---|
[534] | 974 |
|
---|
[538] | 975 | Other possibilities include:
|
---|
[534] | 976 |
|
---|
| 977 | \begin{verbatim}
|
---|
| 978 | # Plot multiple IFs per panel
|
---|
| 979 | ASAP> plotter.set_mode(stacking='i',panelling='t')
|
---|
[538] | 980 |
|
---|
| 981 | # Plot multiple beams per panel
|
---|
| 982 | ASAP> plotter.set_mode(stacking='b',panelling='t')
|
---|
| 983 |
|
---|
| 984 | # Plot one IF per panel, time stacked
|
---|
| 985 | ASAP> plotter.set_mode('t', 'i')
|
---|
| 986 |
|
---|
| 987 | # Plot each scan in a seperate panel
|
---|
| 988 | ASAP> plotter.set_mode('t', 's')
|
---|
| 989 |
|
---|
[534] | 990 | \end{verbatim}
|
---|
| 991 |
|
---|
[538] | 992 | \subsection{Plot Selection}
|
---|
| 993 | \label{sec:plotter_cursor}
|
---|
| 994 |
|
---|
| 995 | The plotter can plot up to 25 panels and stacked spectra per
|
---|
| 996 | panel. If you have data larger than this (or for your own sanity) you
|
---|
| 997 | need to select a subset of this data. This is particularly true for
|
---|
| 998 | multibeam or multi IF data. The plotter \cmd{set\_cursor} function is
|
---|
| 999 | used to select a subset of the data. The arguments \cmd{row},
|
---|
[544] | 1000 | \cmd{beam} and \cmd{IF} all accept a vector of indices corresponding
|
---|
| 1001 | to row, beam or IF selection. Only the selected data will be plotted.
|
---|
| 1002 | To select on polarisation, see section~\ref{sec:polplot}.
|
---|
[538] | 1003 |
|
---|
| 1004 | Examples:
|
---|
| 1005 |
|
---|
| 1006 | \begin{verbatim}
|
---|
| 1007 | # Select second IF
|
---|
| 1008 | ASAP> plotter.set_cursor(IF=[1])
|
---|
| 1009 |
|
---|
| 1010 | # Select first 4 beams
|
---|
| 1011 | ASAP> plotter.set_cursor(beam=[0,1,2,3])
|
---|
| 1012 |
|
---|
| 1013 | # Select a few rows
|
---|
| 1014 | ASAP> plotter.set_cursor(row=[2,4,6,10])
|
---|
| 1015 |
|
---|
| 1016 | # Multiple selection
|
---|
| 1017 | ASAP> plotter.set_cursor(IF=[1], beam=[0,2], row=range(10))
|
---|
| 1018 | \end{verbatim}
|
---|
| 1019 |
|
---|
[544] | 1020 | Note that the plotter cursor selection is independent of the scantable
|
---|
| 1021 | cursor.
|
---|
[534] | 1022 |
|
---|
[544] | 1023 | \subsection{Plot Control}
|
---|
| 1024 |
|
---|
[534] | 1025 | The plotter window has a row of buttons on the lower left. These can
|
---|
| 1026 | be used to control the plotter (mostly for zooming the individual
|
---|
| 1027 | plots). From left to right:
|
---|
| 1028 |
|
---|
| 1029 | \begin{itemize}
|
---|
| 1030 |
|
---|
| 1031 | \item[Home] This will unzoom the plots to the original zoom factor
|
---|
| 1032 |
|
---|
| 1033 | \item[Plot history] (left and right arrow). The plotter keeps a
|
---|
| 1034 | history of zoom settings. The left arrow sets the plot zoom to the
|
---|
| 1035 | previous value. The right arrow returns back again. This allows you,
|
---|
| 1036 | for example, to zoom in on one feature then return the plot to how it
|
---|
| 1037 | was previously.
|
---|
| 1038 |
|
---|
| 1039 | \item[Pan] (The Cross) This sets the cursor to pan, or scroll mode
|
---|
| 1040 | allowing you to shift the plot within the window. Useful when
|
---|
| 1041 | zoomed in on a feature.
|
---|
| 1042 |
|
---|
| 1043 | \item[Zoom] (the letter with the magnifying glass) lets you draw a
|
---|
| 1044 | rectangle around a region of interest then zooms in on that
|
---|
[738] | 1045 | region. Use the plot history to unzoom again.
|
---|
[534] | 1046 |
|
---|
| 1047 | \item[Save] (floppy disk). Save the plot as a postscript or .png file
|
---|
| 1048 |
|
---|
| 1049 | \end{itemize}
|
---|
| 1050 |
|
---|
| 1051 | \subsection{Other control}
|
---|
| 1052 |
|
---|
| 1053 | The plotter has a number of functions to describe the layout of the
|
---|
| 1054 | plot. These include \cmd{set\_legend}, \cmd{set\_layout} and \cmd{set\_title}.
|
---|
| 1055 |
|
---|
| 1056 | To set the exact velocity or channel range to be plotted use the
|
---|
| 1057 | \cmd{set\_range} function. To reset to the default value, call
|
---|
| 1058 | \cmd{set\_range} with no arguments. E.g.
|
---|
| 1059 |
|
---|
| 1060 | \begin{verbatim}
|
---|
| 1061 | ASAP> scans.set_unit('km/s')
|
---|
| 1062 | ASAP> plotter.plot(scans)
|
---|
| 1063 | ASAP> plotter.set_range(-150,-50)
|
---|
[544] | 1064 | ASAP> plotter.set_range() # To reset
|
---|
[534] | 1065 | \end{verbatim}
|
---|
| 1066 |
|
---|
[544] | 1067 | Both the range of the ``x'' and ``y'' axis can be set at once, if desired:
|
---|
| 1068 |
|
---|
| 1069 | \begin{verbatim}
|
---|
| 1070 | ASAP> plotter.set_range(-10,30,-1,6.6)
|
---|
| 1071 | \end{verbatim}
|
---|
| 1072 |
|
---|
[738] | 1073 | To save a hardcopy of the current plot, use the save function, e.g.
|
---|
[534] | 1074 |
|
---|
| 1075 | \begin{verbatim}
|
---|
| 1076 | ASAP> plotter.save('myplot.ps')
|
---|
| 1077 | \end{verbatim}
|
---|
| 1078 |
|
---|
| 1079 | \section{Fitting}
|
---|
| 1080 |
|
---|
| 1081 | Currently multicomponent Gaussian function is available. This is done
|
---|
| 1082 | by creating a fitting object, setting up the fit and actually fitting
|
---|
| 1083 | the data. Fitting can either be done on a single scantable row/cursor
|
---|
| 1084 | selection or on an entire scantable using the \cmd{auto\_fit} function.
|
---|
| 1085 |
|
---|
| 1086 | \begin{verbatim}
|
---|
| 1087 | ASAP> f = fitter()
|
---|
| 1088 | ASAP> f.set_function(gauss=2) # Fit two Gaussians
|
---|
| 1089 | ASAP> f.set_scan(scans)
|
---|
| 1090 | ASAP> scans.set_cursor(0,0,1) # Fit the second polarisation
|
---|
| 1091 | ASAP> scans.set_unit('km/s') # Make fit in velocity units
|
---|
| 1092 | ASAP> f.fit(1) # Run the fit on the second row in the table
|
---|
| 1093 | ASAP> f.plot() # Show fit in a plot window
|
---|
| 1094 | ASAP> f.get_parameters() # Return the fit paramaters
|
---|
| 1095 | \end{verbatim}
|
---|
| 1096 |
|
---|
| 1097 | This auto-guesses the initial values of the fit and works well for data
|
---|
| 1098 | without extra confusing features. Note that the fit is performed in
|
---|
| 1099 | whatever unit the abscissa is set to.
|
---|
| 1100 |
|
---|
| 1101 | If you want to confine the fitting to a smaller range (e.g. to avoid
|
---|
| 1102 | band edge effects or RFI you must set a mask.
|
---|
| 1103 |
|
---|
| 1104 | \begin{verbatim}
|
---|
| 1105 | ASAP> f = fitter()
|
---|
| 1106 | ASAP> f.set_function(gauss=2)
|
---|
| 1107 | ASAP> scans.set_unit('km/s') # Set the mask in channel units
|
---|
| 1108 | ASAP> msk = s.create_mask([1800,2200])
|
---|
| 1109 | ASAP> scans.set_unit('km/s') # Make fit in velocity units
|
---|
| 1110 | ASAP> f.set_scan(s,msk)
|
---|
| 1111 | ASAP> f.fit()
|
---|
| 1112 | ASAP> f.plot()
|
---|
| 1113 | ASAP> f.get_parameters()
|
---|
| 1114 | \end{verbatim}
|
---|
| 1115 |
|
---|
[544] | 1116 | If you wish, the initial parameter guesses can be specified and
|
---|
| 1117 | specific parameters can be fixed:
|
---|
[534] | 1118 |
|
---|
| 1119 | \begin{verbatim}
|
---|
| 1120 | ASAP> f = fitter()
|
---|
| 1121 | ASAP> f.set_function(gauss=2)
|
---|
| 1122 | ASAP> f.set_scan(s,msk)
|
---|
| 1123 | ASAP> f.fit() # Fit using auto-estimates
|
---|
[738] | 1124 | # Set Peak, centre and fwhm for the second gaussian.
|
---|
[534] | 1125 | # Force the centre to be fixed
|
---|
| 1126 | ASAP> f.set_gauss_parameters(0.4,450,150,0,1,0,component=1)
|
---|
| 1127 | ASAP> f.fit() # Re-run the fit
|
---|
| 1128 | \end{verbatim}
|
---|
| 1129 |
|
---|
| 1130 | The fitter \cmd{plot} function has a number of options to either view
|
---|
| 1131 | the fit residuals or the individual components (by default it plots
|
---|
| 1132 | the sum of the model components).
|
---|
| 1133 |
|
---|
| 1134 | Examples:
|
---|
| 1135 |
|
---|
| 1136 | \begin{verbatim}
|
---|
| 1137 | # Plot the residual
|
---|
[738] | 1138 | ASAP> f.plot(residual=True)
|
---|
[534] | 1139 |
|
---|
| 1140 | # Plot the first 2 componentsa
|
---|
[738] | 1141 | ASAP> f.plot(components=[0,1])
|
---|
[534] | 1142 |
|
---|
| 1143 | # Plot the first and third component plus the model sum
|
---|
| 1144 | ASAP> f.plot(components=[-1,0,2]) # -1 means the compoment sum
|
---|
| 1145 | \end{verbatim}
|
---|
| 1146 |
|
---|
[544] | 1147 | \subsection{Fit saving}
|
---|
| 1148 |
|
---|
| 1149 | One you are happy with your fit, it is possible to store it as part of
|
---|
| 1150 | the scantable.
|
---|
| 1151 |
|
---|
| 1152 | \begin{verbatim}
|
---|
| 1153 | ASAP> f.storefit()
|
---|
| 1154 | \end{verbatim}
|
---|
| 1155 |
|
---|
| 1156 | This will be saved to disk with the data, if the ``ASAP'' file format
|
---|
| 1157 | is selected. Multiple fits to the same data can be stored in the
|
---|
[738] | 1158 | scantable.
|
---|
[544] | 1159 |
|
---|
| 1160 | The scantable function \cmd{get\_fit} can be used to retrieve the
|
---|
| 1161 | stored fits. Currently the fit parameters are just printed to the
|
---|
| 1162 | screen.
|
---|
| 1163 |
|
---|
| 1164 | \begin{verbatim}
|
---|
| 1165 | ASAP> scans.get_fit(4) # Print fits for row 4
|
---|
| 1166 | \end{verbatim}
|
---|
| 1167 |
|
---|
[534] | 1168 | \section{Polarisation}
|
---|
| 1169 |
|
---|
| 1170 | Currently ASAP only supports polarmetric analysis on linearly
|
---|
| 1171 | polarised feeds and the cross polarisation products measured. Other
|
---|
| 1172 | cases will be added on an as needed basic.
|
---|
| 1173 |
|
---|
[538] | 1174 | Conversions of linears to Stokes or Circular polarisations are done
|
---|
[544] | 1175 | ``on-the-fly''. Leakage cannot be corrected for nor are these routines
|
---|
[738] | 1176 | able to calibrate position angle offsets.
|
---|
[534] | 1177 |
|
---|
[538] | 1178 | \subsection{Simple Calibration}
|
---|
| 1179 |
|
---|
[763] | 1180 | {\em Currently the receiver position angle is not read from the RPFITS
|
---|
| 1181 | file and a position angle of zero is assumed. This severely hampers
|
---|
| 1182 | correct handling of polarimetry. In the future we aim to define a
|
---|
| 1183 | general framework and populate the RPFITS files with the data required
|
---|
| 1184 | for transparent polarimetric calibration.}
|
---|
[538] | 1185 |
|
---|
| 1186 | It is possible that there is a phase offset between polarisation which
|
---|
[546] | 1187 | will effect the phase of the cross polarisation correlation, and so give
|
---|
| 1188 | rise to spurious polarisation. \cmd{rotate\_xyphase} can be used to
|
---|
| 1189 | correct for this error. At this point, the user must know how to
|
---|
| 1190 | determine the size of the phase offset themselves.
|
---|
[538] | 1191 |
|
---|
| 1192 | \begin{verbatim}
|
---|
[546] | 1193 | ASAP> scans.rotate_xyphase(10.5) # Degrees
|
---|
[538] | 1194 | \end{verbatim}
|
---|
| 1195 |
|
---|
| 1196 | Note that if this function is run twice, the sum of the two values is
|
---|
[546] | 1197 | applied because it is done in-situ.
|
---|
[538] | 1198 |
|
---|
[546] | 1199 | A correction for the receiver parallactic angle may need to be made,
|
---|
| 1200 | either because of how it is mounted or if parallactifiying had to track
|
---|
[538] | 1201 | at 90 degrees rather than 0. Use \cmd{rotate\_linpolphase} to correct
|
---|
| 1202 | the position angle. Running this function twice results in the sum of
|
---|
[546] | 1203 | the corrections being applied because it is applied in-situ.
|
---|
[538] | 1204 |
|
---|
| 1205 | \begin{verbatim}
|
---|
[546] | 1206 | ASAP> scans.rotate_linpolphase(-20) # Degrees; correct for receiver mounting
|
---|
[538] | 1207 |
|
---|
| 1208 | # Receiver was tracking 90 degrees rather than 0
|
---|
[738] | 1209 | ASAP> scans.rotate_linpolphase(90)
|
---|
[538] | 1210 | \end{verbatim}
|
---|
| 1211 |
|
---|
| 1212 | \subsection{Plotting}
|
---|
| 1213 | \label{sec:polplot}
|
---|
| 1214 |
|
---|
[546] | 1215 | To plot Stokes values, the plotter \cmd{set\_cursor} function should
|
---|
[538] | 1216 | be called first using the \cmd{pol} argument. The values which can be
|
---|
[548] | 1217 | plotted include a selection of [I,Q,U,V], [I, Plinear, Pangle, V],
|
---|
| 1218 | [RR, LL] or [XX, YY, Real(XY), Imaginary(XY)]. (Plinear and Pangle are
|
---|
| 1219 | the percentage and position angle of linear polarisation). Conversion
|
---|
| 1220 | to circular polarisations are currently not available.
|
---|
[538] | 1221 |
|
---|
| 1222 | Example:
|
---|
| 1223 |
|
---|
| 1224 | \begin{verbatim}
|
---|
[763] | 1225 | ASAP> plotter.set_cursor(pol=``I Q'')
|
---|
| 1226 | ASAP> plotter.set_cursor(pol=``RR LL'')
|
---|
| 1227 | ASAP> plotter.set_cursor(pol=``XX YY'')
|
---|
| 1228 | ASAP> plotter.set_cursor(pol=``I Plinear'')
|
---|
[538] | 1229 | \end{verbatim}
|
---|
| 1230 |
|
---|
| 1231 | Row, beam and IF selection are also available in \cmd{set\_cursor} as
|
---|
| 1232 | describe in section~\ref{sec:plotter_cursor}.
|
---|
| 1233 |
|
---|
| 1234 | \subsection{Saving}
|
---|
| 1235 |
|
---|
| 1236 | When saving data using the \cmd{save} function, the \cmd{stokes}
|
---|
| 1237 | argument can be used to save the data as Stoke values when saving in
|
---|
| 1238 | FITS format.
|
---|
| 1239 |
|
---|
| 1240 | Example:
|
---|
| 1241 |
|
---|
| 1242 | \begin{verbatim}
|
---|
| 1243 | ASAP> scans.save('myscan.sdfits', 'SDFITS', stokes=True)
|
---|
| 1244 | \end{verbatim}
|
---|
| 1245 |
|
---|
[534] | 1246 |
|
---|
[763] | 1247 | \section{Scantable Mathematics}
|
---|
| 1248 |
|
---|
| 1249 | It is possible to to simple mathematics directly on scantables from
|
---|
| 1250 | the command line using the \cmd{+, -, *, /} operators as well as their
|
---|
| 1251 | cousins \cmd{+=, -= *=, /=}. This works between two scantables or a
|
---|
| 1252 | scantable and a float. (Note that it does not work for integers).
|
---|
| 1253 |
|
---|
[534] | 1254 | \begin{verbatim}
|
---|
[763] | 1255 | ASAP> sum = scan1+scan2
|
---|
| 1256 | ASAP> scan2 = scan1+2.0
|
---|
| 1257 | ASAP> scan *= 1.05
|
---|
| 1258 | \end{verbatim}
|
---|
| 1259 |
|
---|
| 1260 | \section{Scripting}
|
---|
| 1261 |
|
---|
| 1262 | Because asap is based on python, it easy for the user write their own
|
---|
| 1263 | scripts and functions to process data. This is highly recommended as
|
---|
| 1264 | most processing of user data could then be done in a couple of steps
|
---|
| 1265 | using a few simple user defined functions. A Python primer is beyond
|
---|
| 1266 | the scope of this userguide. See the asap home pages for a scripting
|
---|
| 1267 | tutorial or the main python website for comprehensive documentation.
|
---|
| 1268 |
|
---|
| 1269 | \hspace{1cm} http://www.atnf.csiro.au/computing/software/asap/tutorials
|
---|
| 1270 | \hspace{1cm} http://www.python.org/doc/Introduction.html
|
---|
| 1271 |
|
---|
| 1272 | \subsection{Running scripts}
|
---|
| 1273 |
|
---|
| 1274 | The asap global function \cmd{execfile} reads the named text file and
|
---|
| 1275 | executes the contained python code. This file can either contain
|
---|
| 1276 | function definitions which will be used in subsequent processing or
|
---|
| 1277 | just a set of commands to process a specific dataset.
|
---|
| 1278 |
|
---|
| 1279 | \subsection{asapuserfuncs.py}
|
---|
| 1280 |
|
---|
| 1281 | The file $\sim$/.asap/asapuserfuncs.py is automatically read in when
|
---|
| 1282 | asap is started. The user can use this to define a set of user
|
---|
| 1283 | functions which are automatically available each time asap is
|
---|
| 1284 | used. The \cmd{execfile} function can be called from within this file.
|
---|
| 1285 |
|
---|
| 1286 | \section{Worked examples}
|
---|
| 1287 |
|
---|
| 1288 | In the following section a few examples of end-to-end processing of
|
---|
[774] | 1289 | some data in asap are given.
|
---|
[763] | 1290 |
|
---|
| 1291 | \subsection{Mopra}
|
---|
| 1292 |
|
---|
| 1293 | \subsection{Parkes Polarimetry}
|
---|
| 1294 |
|
---|
| 1295 | The following example is processing of some Parkes polarmetric
|
---|
| 1296 | observations of OH masers at 1.6~GHz. Because digital filters where
|
---|
| 1297 | used in the backend, the baselines are stable enough not to require a
|
---|
| 1298 | quotient spectra. The 4~MHz bandwidth is wide enough to observe both
|
---|
| 1299 | the 1665 and 1667~MHz OH maser transitions. Each source was observed
|
---|
| 1300 | once for about 10 minutes. Tsys information was not written to the
|
---|
| 1301 | rpfits file (a nominal 25K values was used), so the amplitudes need
|
---|
| 1302 | to be adjusted based on a separate log file. A simple user function is
|
---|
| 1303 | used to simplify this, contained in a file called mypol.py:
|
---|
| 1304 |
|
---|
| 1305 | \begin{verbatim}
|
---|
| 1306 | def xyscale(data,xtsys=1.0,ytsys=1.0,nomtsys=25.0) :
|
---|
| 1307 |
|
---|
| 1308 | data.set_cursor(pol=0)
|
---|
| 1309 | data.scale(xtsys/nomtsys,allaxes=False)
|
---|
| 1310 |
|
---|
| 1311 | data.set_cursor(pol=1)
|
---|
| 1312 | data.scale(ytsys/nomtsys,allaxes=False)
|
---|
| 1313 |
|
---|
| 1314 | data.set_cursor(pol=2)
|
---|
| 1315 | data.scale((xtsys+ytsys)/(2*nomtsys),allaxes=False)
|
---|
| 1316 |
|
---|
| 1317 | data.set_cursor(pol=3)
|
---|
| 1318 | data.scale((xtsys+ytsys)/(2*nomtsys),allaxes=False)
|
---|
| 1319 | \end{verbatim}
|
---|
| 1320 |
|
---|
| 1321 | The typical asap session would be
|
---|
| 1322 |
|
---|
| 1323 | \begin{verbatim}
|
---|
[774] | 1324 |
|
---|
[763] | 1325 | # Remind ourself the name of the rpfits files
|
---|
[774] | 1326 | ls
|
---|
[763] | 1327 |
|
---|
| 1328 | # Load data from an rpfits file
|
---|
| 1329 | d1665 = scantable('2005-10-27_0154-P484.rpf')
|
---|
| 1330 |
|
---|
| 1331 | # Check what we have just loaded
|
---|
| 1332 | d1665.summary
|
---|
| 1333 |
|
---|
| 1334 | # View the data in velocity
|
---|
| 1335 | d1665.set_unit('km/s')
|
---|
| 1336 | d1665.set_freqframe('LSRK')
|
---|
| 1337 |
|
---|
| 1338 | # Correct for the known phase offset in the crosspol data
|
---|
| 1339 | d1665.rotate_xyphase(-4)
|
---|
| 1340 |
|
---|
[774] | 1341 | # Create a copy of the data and set the rest frequency to the 1667 MHz
|
---|
[763] | 1342 | # transition
|
---|
| 1343 | d1667 = d1665.copy()
|
---|
| 1344 | d1667.set_restfreqs(lines=['OH1667'])
|
---|
| 1345 | d1667.summary
|
---|
| 1346 |
|
---|
| 1347 | # Copy out the scan we wish to process
|
---|
| 1348 | g351_5 = d1665.get_scan('351p160')
|
---|
| 1349 | g351_7 = d1667.get_scan('351p160')
|
---|
| 1350 |
|
---|
| 1351 | # Plot the data
|
---|
| 1352 | plotter.plot(g351_5,g351_7) # Only shows one panel
|
---|
| 1353 |
|
---|
| 1354 | # Tell the plotter to stack polarisation and panel scans
|
---|
| 1355 | plotter.set_mode('p','s')
|
---|
| 1356 |
|
---|
| 1357 | # Correct for the Tsys using our predefined function
|
---|
| 1358 | execfile('mypol.py') # Read in the function
|
---|
| 1359 | xyscale(g351_5,23.2,22.7) # Execute it on the data
|
---|
| 1360 | xyscale(g351_7,23.2,22.7)
|
---|
| 1361 |
|
---|
| 1362 | # Only plot the velocity range of interest
|
---|
| 1363 | plotter.set_range(-30,10)
|
---|
| 1364 |
|
---|
| 1365 | # Baseline the data
|
---|
| 1366 | msk = g351_5.create_mask([-20,-15],[0,5])
|
---|
| 1367 | g351_5.poly_baseline(msk,1)
|
---|
| 1368 | msk = g351_7.create_mask([-20,-15],[0,5])
|
---|
| 1369 | g351_7.poly_baseline(msk,1)
|
---|
| 1370 |
|
---|
| 1371 | # Update the plot with the baselined data
|
---|
| 1372 | plotter.plot()
|
---|
| 1373 |
|
---|
| 1374 | # Look at the various polarisation products
|
---|
| 1375 | plotter.set_cursor(pol='RR LL')
|
---|
| 1376 | plotter.set_cursor(pol='I Plinear')
|
---|
| 1377 | plotter.set_cursor(pol='I Q U V')
|
---|
| 1378 |
|
---|
| 1379 | # Save the plot as postscript
|
---|
| 1380 | plotter.save('g361_stokes.ps')
|
---|
| 1381 |
|
---|
| 1382 | # Save the process spectra
|
---|
| 1383 | g351_5.save('junk5.asap')
|
---|
| 1384 | g351_7.save('junk7.asap')
|
---|
| 1385 |
|
---|
| 1386 | \end{verbatim}
|
---|
| 1387 |
|
---|
| 1388 | \subsection{Tidbinbilla}
|
---|
| 1389 |
|
---|
[767] | 1390 | The following example is processing of some Tidbinbilla observations
|
---|
| 1391 | of NH$_3$ at 12~mm. Tidbinbilla has (at the time of observations) a
|
---|
| 1392 | single polarisation, but can process two IFs simultaneously. In the
|
---|
| 1393 | example, the first half of the observation was observing the (1,1) and
|
---|
| 1394 | (2,2) transitions simultaneously). The second half observed only the
|
---|
| 1395 | (4,4) transition due to bandwidth limitations. The data is position
|
---|
| 1396 | switched, observing first an reference to the west, then the source
|
---|
| 1397 | twice and finally reference to the east.
|
---|
| 1398 |
|
---|
| 1399 | \begin{verbatim}
|
---|
| 1400 |
|
---|
| 1401 | # Load the rpfits file and inspect
|
---|
| 1402 | d = scantable('2003-03-16_082048_t0002.rpf')
|
---|
| 1403 | print d
|
---|
| 1404 |
|
---|
| 1405 | # Make the quotient spectra
|
---|
| 1406 | q = d.auto_quotient()
|
---|
| 1407 | print q
|
---|
| 1408 |
|
---|
| 1409 | # Plot/select in velocity
|
---|
| 1410 | q.set_freqframe('LSRK')
|
---|
| 1411 | q.set_unit('km/s')
|
---|
| 1412 |
|
---|
| 1413 | # Seperate data from the (1,1)&(2,2) and (4,4) transitions
|
---|
| 1414 | g1 = q.get_scan(range(6)) # Rows 0..5
|
---|
| 1415 | g2 = q.get_scan(range(6,12)) # Rows 6..11
|
---|
| 1416 |
|
---|
[774] | 1417 | # Align data in velocity
|
---|
[767] | 1418 | g1.freq_align(perif=True)
|
---|
| 1419 | g2.freq_align(perif=True)
|
---|
| 1420 |
|
---|
| 1421 | # Average individual scans
|
---|
| 1422 | a1 = g1.average_time()
|
---|
| 1423 | a2 = g2.average_time()
|
---|
| 1424 |
|
---|
| 1425 | # Rpfits file only contrains a single rest frequency. Set both
|
---|
| 1426 | a1.set_restfreqs(freqs= [23694.4700e6,23722.6336e6])
|
---|
| 1427 |
|
---|
| 1428 | plotter.plot(a1,a2)
|
---|
| 1429 | plotter.set_mode('i','s')
|
---|
| 1430 | x = raw_input()
|
---|
| 1431 |
|
---|
| 1432 | a1.auto_poly_baseline()
|
---|
| 1433 | a2.auto_poly_baseline()
|
---|
| 1434 |
|
---|
| 1435 | plotter.plot()
|
---|
| 1436 |
|
---|
| 1437 | a1.smooth('gauss',5)
|
---|
| 1438 | a2.smooth('gauss',5)
|
---|
| 1439 | plotter.plot()
|
---|
| 1440 |
|
---|
| 1441 | \end{verbatim}
|
---|
| 1442 |
|
---|
[763] | 1443 | \newpage
|
---|
| 1444 |
|
---|
| 1445 | \section{Appendix}
|
---|
| 1446 |
|
---|
| 1447 | \subsection{Function Summary}
|
---|
| 1448 |
|
---|
| 1449 | \begin{verbatim}
|
---|
[738] | 1450 | [The scan container]
|
---|
[534] | 1451 | scantable - a container for integrations/scans
|
---|
| 1452 | (can open asap/rpfits/sdfits and ms files)
|
---|
| 1453 | copy - returns a copy of a scan
|
---|
| 1454 | get_scan - gets a specific scan out of a scantable
|
---|
| 1455 | summary - print info about the scantable contents
|
---|
| 1456 | set_cursor - set a specific Beam/IF/Pol 'cursor' for
|
---|
| 1457 | further use
|
---|
| 1458 | get_cursor - print out the current cursor position
|
---|
| 1459 | stats - get specified statistic of the spectra in
|
---|
| 1460 | the scantable
|
---|
| 1461 | stddev - get the standard deviation of the spectra
|
---|
| 1462 | in the scantable
|
---|
| 1463 | get_tsys - get the TSys
|
---|
| 1464 | get_time - get the timestamps of the integrations
|
---|
| 1465 | get_unit - get the currnt unit
|
---|
| 1466 | set_unit - set the abcissa unit to be used from this
|
---|
| 1467 | point on
|
---|
| 1468 | get_abcissa - get the abcissa values and name for a given
|
---|
| 1469 | row (time)
|
---|
| 1470 | set_freqframe - set the frame info for the Spectral Axis
|
---|
| 1471 | (e.g. 'LSRK')
|
---|
| 1472 | set_doppler - set the doppler to be used from this point on
|
---|
| 1473 | set_instrument - set the instrument name
|
---|
| 1474 | get_fluxunit - get the brightness flux unit
|
---|
| 1475 | set_fluxunit - set the brightness flux unit
|
---|
| 1476 | create_mask - return an mask in the current unit
|
---|
| 1477 | for the given region. The specified regions
|
---|
| 1478 | are NOT masked
|
---|
| 1479 | get_restfreqs - get the current list of rest frequencies
|
---|
| 1480 | set_restfreqs - set a list of rest frequencies
|
---|
| 1481 | lines - print list of known spectral lines
|
---|
| 1482 | flag_spectrum - flag a whole Beam/IF/Pol
|
---|
| 1483 | save - save the scantable to disk as either 'ASAP'
|
---|
| 1484 | or 'SDFITS'
|
---|
| 1485 | nbeam,nif,nchan,npol - the number of beams/IFs/Pols/Chans
|
---|
| 1486 | history - print the history of the scantable
|
---|
[544] | 1487 | get_fit - get a fit which has been stored witnh the data
|
---|
[738] | 1488 | average_time - return the (weighted) time average of a scan
|
---|
[534] | 1489 | or a list of scans
|
---|
| 1490 | average_pol - average the polarisations together.
|
---|
| 1491 | The dimension won't be reduced and
|
---|
| 1492 | all polarisations will contain the
|
---|
| 1493 | averaged spectrum.
|
---|
[738] | 1494 | auto_quotient - return the on/off quotient with
|
---|
| 1495 | automatic detection of the on/off scans
|
---|
[534] | 1496 | quotient - return the on/off quotient
|
---|
| 1497 | scale - return a scan scaled by a given factor
|
---|
[738] | 1498 | add - return a scan with given value added
|
---|
[534] | 1499 | bin - return a scan with binned channels
|
---|
| 1500 | resample - return a scan with resampled channels
|
---|
| 1501 | smooth - return the spectrally smoothed scan
|
---|
| 1502 | poly_baseline - fit a polynomial baseline to all Beams/IFs/Pols
|
---|
[738] | 1503 | auto_poly_baseline - automatically fit a polynomial baseline
|
---|
[774] | 1504 | recalc_azel - recalculate azimuth and elevation based on
|
---|
| 1505 | the pointing
|
---|
[534] | 1506 | gain_el - apply gain-elevation correction
|
---|
| 1507 | opacity - apply opacity correction
|
---|
| 1508 | convert_flux - convert to and from Jy and Kelvin brightness
|
---|
| 1509 | units
|
---|
| 1510 | freq_align - align spectra in frequency frame
|
---|
| 1511 | rotate_xyphase - rotate XY phase of cross correlation
|
---|
| 1512 | rotate_linpolphase - rotate the phase of the complex
|
---|
| 1513 | polarization O=Q+iU correlation
|
---|
| 1514 | [Math] Mainly functions which operate on more than one scantable
|
---|
| 1515 |
|
---|
[738] | 1516 | average_time - return the (weighted) time average
|
---|
[534] | 1517 | of a list of scans
|
---|
| 1518 | quotient - return the on/off quotient
|
---|
[544] | 1519 | simple_math - simple mathematical operations on two scantables,
|
---|
| 1520 | 'add', 'sub', 'mul', 'div'
|
---|
[534] | 1521 | [Fitting]
|
---|
| 1522 | fitter
|
---|
| 1523 | auto_fit - return a scan where the function is
|
---|
| 1524 | applied to all Beams/IFs/Pols.
|
---|
| 1525 | commit - return a new scan where the fits have been
|
---|
| 1526 | commited.
|
---|
| 1527 | fit - execute the actual fitting process
|
---|
[544] | 1528 | store_fit - store the fit paramaters in the data (scantable)
|
---|
[534] | 1529 | get_chi2 - get the Chi^2
|
---|
| 1530 | set_scan - set the scantable to be fit
|
---|
| 1531 | set_function - set the fitting function
|
---|
| 1532 | set_parameters - set the parameters for the function(s), and
|
---|
| 1533 | set if they should be held fixed during fitting
|
---|
[544] | 1534 | set_gauss_parameters - same as above but specialised for individual
|
---|
| 1535 | gaussian components
|
---|
[534] | 1536 | get_parameters - get the fitted parameters
|
---|
| 1537 | plot - plot the resulting fit and/or components and
|
---|
| 1538 | residual
|
---|
| 1539 | [Plotter]
|
---|
| 1540 | asapplotter - a plotter for asap, default plotter is
|
---|
| 1541 | called 'plotter'
|
---|
| 1542 | plot - plot a (list of) scantable
|
---|
| 1543 | save - save the plot to a file ('png' ,'ps' or 'eps')
|
---|
| 1544 | set_mode - set the state of the plotter, i.e.
|
---|
| 1545 | what is to be plotted 'colour stacked'
|
---|
| 1546 | and what 'panelled'
|
---|
[544] | 1547 | set_cursor - only plot a selected part of the data
|
---|
| 1548 | set_range - set a 'zoom' window
|
---|
[534] | 1549 | set_legend - specify user labels for the legend indeces
|
---|
| 1550 | set_title - specify user labels for the panel indeces
|
---|
| 1551 | set_ordinate - specify a user label for the ordinate
|
---|
| 1552 | set_abcissa - specify a user label for the abcissa
|
---|
| 1553 | set_layout - specify the multi-panel layout (rows,cols)
|
---|
[738] | 1554 |
|
---|
[534] | 1555 | [Reading files]
|
---|
| 1556 | reader - access rpfits/sdfits files
|
---|
| 1557 | read - read in integrations
|
---|
| 1558 | summary - list info about all integrations
|
---|
| 1559 |
|
---|
| 1560 | [General]
|
---|
| 1561 | commands - this command
|
---|
| 1562 | print - print details about a variable
|
---|
| 1563 | list_scans - list all scantables created bt the user
|
---|
| 1564 | del - delete the given variable from memory
|
---|
| 1565 | range - create a list of values, e.g.
|
---|
| 1566 | range(3) = [0,1,2], range(2,5) = [2,3,4]
|
---|
| 1567 | help - print help for one of the listed functions
|
---|
[538] | 1568 | execfile - execute an asap script, e.g. execfile('myscript')
|
---|
[544] | 1569 | list_rcparameters - print out a list of possible values to be
|
---|
[763] | 1570 | put into \$HOME/.asaprc
|
---|
[534] | 1571 | mask_and,mask_or,
|
---|
| 1572 | mask_not - boolean operations on masks created with
|
---|
| 1573 | scantable.create_mask
|
---|
[738] | 1574 |
|
---|
[534] | 1575 | Note:
|
---|
| 1576 | How to use this with help:
|
---|
| 1577 | # function 'summary'
|
---|
| 1578 | [xxx] is just a category
|
---|
[544] | 1579 | Every 'sub-level' in this list should be replaces by a '.' Period when
|
---|
[738] | 1580 | using help
|
---|
[534] | 1581 | Example:
|
---|
| 1582 | ASAP> help scantable # to get info on ths scantable
|
---|
| 1583 | ASAP> help scantable.summary # to get help on the scantable's
|
---|
| 1584 | ASAP> help average_time
|
---|
[544] | 1585 |
|
---|
[534] | 1586 | \end{verbatim}
|
---|
| 1587 |
|
---|
| 1588 | \subsection{Installation}
|
---|
| 1589 |
|
---|
| 1590 | ASAP depends on a number of third-party libraries which you must
|
---|
| 1591 | have installed before attempting to build ASAP. These are:
|
---|
| 1592 |
|
---|
| 1593 | \begin{itemize}
|
---|
| 1594 | \item AIPS++
|
---|
| 1595 | \item Boost
|
---|
| 1596 | \item Matplotlib
|
---|
[738] | 1597 | \item python/ipython
|
---|
[534] | 1598 | \end{itemize}
|
---|
| 1599 |
|
---|
| 1600 | Debian Linux is currently supported and we intend also
|
---|
| 1601 | to support other popular Linux flavours, Solaris and Mac.
|
---|
| 1602 |
|
---|
| 1603 | Of the dependencies, AIPS++ is the most complex to install.
|
---|
| 1604 |
|
---|
| 1605 | \subsection{ASCII output format}
|
---|
| 1606 |
|
---|
| 1607 | \subsection{.asaprc settings}
|
---|
| 1608 |
|
---|
[763] | 1609 | \asaprc{verbose}{{\bf True}/False}{Print verbose output}
|
---|
| 1610 |
|
---|
| 1611 | \asaprc{insitu}{{\bf True}/False}{Apply operations on the input
|
---|
| 1612 | scantable or return new one}
|
---|
| 1613 |
|
---|
| 1614 | % plotting
|
---|
| 1615 |
|
---|
| 1616 | \asaprc{useplotter}{{\bf True}/False}{Preload a default plotter}
|
---|
| 1617 |
|
---|
| 1618 | \asaprc{plotter.gui}{{\bf True}/False}{Do we want a GUI or plot to a
|
---|
| 1619 | file}
|
---|
| 1620 |
|
---|
| 1621 | \asaprc{plotter.stacking}{{\bf Pol} Beam IF Scan Time}{Default mode for
|
---|
| 1622 | colour stacking}
|
---|
| 1623 |
|
---|
| 1624 | \asaprc{plotter.panelling}{Pol Beam IF {\bf Scan} Time}{Default mode
|
---|
| 1625 | for panelling}
|
---|
| 1626 |
|
---|
| 1627 | \asaprc{plotter.ganged}{{\bf True}/False}{Push panels together, to
|
---|
| 1628 | share axislabels}
|
---|
| 1629 |
|
---|
| 1630 | \asaprc{plotter.decimate}{True/{\bf False}}{Decimate the number of
|
---|
| 1631 | points plotted by a factor of nchan/1024}
|
---|
| 1632 |
|
---|
| 1633 | % default colours/linestyles
|
---|
| 1634 | %\asaprc{plotter.colours}{.}{.}
|
---|
| 1635 | %\asaprc{plotter.linestyles{.}{.}
|
---|
| 1636 |
|
---|
| 1637 | % scantable
|
---|
| 1638 | \asaprc{scantable.save}{{\bf ASAP} SDFITS FITS ASCII MS2}{Default output
|
---|
[774] | 1639 | format when saving}
|
---|
[763] | 1640 |
|
---|
| 1641 | \asaprc{scantable.autoaverage}{{\bf True}/False}{Auto averaging on
|
---|
| 1642 | read}
|
---|
| 1643 |
|
---|
| 1644 | \asaprc{scantable.freqframe}{{\bf LSRK} TOPO BARY etc}{default
|
---|
| 1645 | frequency frame to set when function scantable.set\_freqframe is
|
---|
| 1646 | called}
|
---|
| 1647 |
|
---|
| 1648 | \asaprc{scantable.allaxes}{{\bf True}/False}{Apply action to all axes
|
---|
| 1649 | not just the cursor location}
|
---|
| 1650 |
|
---|
| 1651 | \asaprc{scantable.plotter}{{\bf True}/False}{Use internal plotter}
|
---|
| 1652 |
|
---|
| 1653 | \asaprc{scantable.verbosesummary}{True/{\bf False}}{Control the level
|
---|
| 1654 | of information printed by summary}
|
---|
| 1655 |
|
---|
[534] | 1656 | \end{document}
|
---|
[767] | 1657 |
|
---|