source: branches/Release-2-fixes/src/SDMath.cc @ 699

Last change on this file since 699 was 699, checked in by mar637, 19 years ago

whitespace tidy

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 61.8 KB
Line 
1//#---------------------------------------------------------------------------
2//# SDMath.cc: A collection of single dish mathematical operations
3//#---------------------------------------------------------------------------
4//# Copyright (C) 2004
5//# ATNF
6//#
7//# This program is free software; you can redistribute it and/or modify it
8//# under the terms of the GNU General Public License as published by the Free
9//# Software Foundation; either version 2 of the License, or (at your option)
10//# any later version.
11//#
12//# This program is distributed in the hope that it will be useful, but
13//# WITHOUT ANY WARRANTY; without even the implied warranty of
14//# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General
15//# Public License for more details.
16//#
17//# You should have received a copy of the GNU General Public License along
18//# with this program; if not, write to the Free Software Foundation, Inc.,
19//# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
20//#
21//# Correspondence concerning this software should be addressed as follows:
22//#        Internet email: Malte.Marquarding@csiro.au
23//#        Postal address: Malte Marquarding,
24//#                        Australia Telescope National Facility,
25//#                        P.O. Box 76,
26//#                        Epping, NSW, 2121,
27//#                        AUSTRALIA
28//#
29//# $Id:
30//#---------------------------------------------------------------------------
31#include <vector>
32
33#include <casa/aips.h>
34#include <casa/iostream.h>
35#include <casa/iomanip.h>
36#include <casa/BasicSL/String.h>
37#include <casa/Arrays/IPosition.h>
38#include <casa/Arrays/Array.h>
39#include <casa/Arrays/ArrayIter.h>
40#include <casa/Arrays/VectorIter.h>
41#include <casa/Arrays/ArrayMath.h>
42#include <casa/Arrays/ArrayLogical.h>
43#include <casa/Arrays/MaskedArray.h>
44#include <casa/Arrays/MaskArrMath.h>
45#include <casa/Arrays/MaskArrLogi.h>
46#include <casa/Arrays/Matrix.h>
47#include <casa/BasicMath/Math.h>
48#include <casa/Exceptions.h>
49#include <casa/Quanta/Quantum.h>
50#include <casa/Quanta/Unit.h>
51#include <casa/Quanta/MVEpoch.h>
52#include <casa/Quanta/MVTime.h>
53#include <casa/Utilities/Assert.h>
54
55#include <coordinates/Coordinates/SpectralCoordinate.h>
56#include <coordinates/Coordinates/CoordinateSystem.h>
57#include <coordinates/Coordinates/CoordinateUtil.h>
58#include <coordinates/Coordinates/FrequencyAligner.h>
59
60#include <lattices/Lattices/LatticeUtilities.h>
61#include <lattices/Lattices/RebinLattice.h>
62
63#include <measures/Measures/MEpoch.h>
64#include <measures/Measures/MDirection.h>
65#include <measures/Measures/MPosition.h>
66
67#include <scimath/Mathematics/VectorKernel.h>
68#include <scimath/Mathematics/Convolver.h>
69#include <scimath/Mathematics/InterpolateArray1D.h>
70#include <scimath/Functionals/Polynomial.h>
71
72#include <tables/Tables/Table.h>
73#include <tables/Tables/ScalarColumn.h>
74#include <tables/Tables/ArrayColumn.h>
75#include <tables/Tables/ReadAsciiTable.h>
76
77#include "MathUtils.h"
78#include "SDDefs.h"
79#include "SDAttr.h"
80#include "SDContainer.h"
81#include "SDMemTable.h"
82
83#include "SDMath.h"
84#include "SDPol.h"
85
86using namespace casa;
87using namespace asap;
88
89
90SDMath::SDMath()
91{;}
92
93SDMath::SDMath(const SDMath& other)
94{
95
96// No state
97
98}
99
100SDMath& SDMath::operator=(const SDMath& other)
101{
102  if (this != &other) {
103// No state
104  }
105  return *this;
106}
107
108SDMath::~SDMath()
109{;}
110
111
112SDMemTable* SDMath::frequencyAlignment(const SDMemTable& in,
113                                       const String& refTime,
114                                       const String& method,
115                                       Bool perFreqID) const
116{
117  // Get frame info from Table
118   std::vector<std::string> info = in.getCoordInfo();
119
120   // Parse frequency system
121   String systemStr(info[1]);
122   String baseSystemStr(info[3]);
123   if (baseSystemStr==systemStr) {
124     throw(AipsError("You have not set a frequency frame different from the initial - use function set_freqframe"));
125   }
126
127   MFrequency::Types freqSystem;
128   MFrequency::getType(freqSystem, systemStr);
129
130   return frequencyAlign(in, freqSystem, refTime, method, perFreqID);
131}
132
133
134
135CountedPtr<SDMemTable>
136SDMath::average(const std::vector<CountedPtr<SDMemTable> >& in,
137                const Vector<Bool>& mask, Bool scanAv,
138                const String& weightStr, Bool alignFreq) const
139// Weighted averaging of spectra from one or more Tables.
140{
141  // Convert weight type 
142  WeightType wtType = NONE;
143  convertWeightString(wtType, weightStr, True);
144
145  // Create output Table by cloning from the first table
146  SDMemTable* pTabOut = new SDMemTable(*in[0],True);
147  if (in.size() > 1) {
148    for (uInt i=1; i < in.size(); ++i) {
149      pTabOut->appendToHistoryTable(in[i]->getHistoryTable());
150    }
151  }
152  // Setup
153  IPosition shp = in[0]->rowAsMaskedArray(0).shape();      // Must not change
154  Array<Float> arr(shp);
155  Array<Bool> barr(shp);
156  const Bool useMask = (mask.nelements() == shp(asap::ChanAxis));
157
158  // Columns from Tables
159  ROArrayColumn<Float> tSysCol;
160  ROScalarColumn<Double> mjdCol;
161  ROScalarColumn<String> srcNameCol;
162  ROScalarColumn<Double> intCol;
163  ROArrayColumn<uInt> fqIDCol;
164  ROScalarColumn<Int> scanIDCol;
165
166  // Create accumulation MaskedArray. We accumulate for each
167  // channel,if,pol,beam Note that the mask of the accumulation array
168  // will ALWAYS remain ALL True.  The MA is only used so that when
169  // data which is masked Bad is added to it, that data does not
170  // contribute.
171
172  Array<Float> zero(shp);
173  zero=0.0;
174  Array<Bool> good(shp);
175  good = True;
176  MaskedArray<Float> sum(zero,good);
177
178  // Counter arrays
179  Array<Float> nPts(shp);             // Number of points
180  nPts = 0.0;
181  Array<Float> nInc(shp);             // Increment
182  nInc = 1.0;
183
184  // Create accumulation Array for variance. We accumulate for each
185  // if,pol,beam, but average over channel.  So we need a shape with
186  // one less axis dropping channels.
187  const uInt nAxesSub = shp.nelements() - 1;
188  IPosition shp2(nAxesSub);
189  for (uInt i=0,j=0; i<(nAxesSub+1); i++) {
190     if (i!=asap::ChanAxis) {
191       shp2(j) = shp(i);
192       j++;
193     }
194  }
195  Array<Float> sumSq(shp2);
196  sumSq = 0.0;
197  IPosition pos2(nAxesSub,0);                        // For indexing
198
199  // Time-related accumulators
200  Double time;
201  Double timeSum = 0.0;
202  Double intSum = 0.0;
203  Double interval = 0.0;
204
205  // To get the right shape for the Tsys accumulator we need to access
206  // a column from the first table.  The shape of this array must not
207  // change.  Note however that since the TSysSqSum array is used in a
208  // normalization process, and that I ignore the channel axis
209  // replication of values for now, it loses a dimension
210
211  Array<Float> tSysSum, tSysSqSum;
212  {
213    const Table& tabIn = in[0]->table();
214    tSysCol.attach(tabIn,"TSYS");
215    tSysSum.resize(tSysCol.shape(0));
216    tSysSqSum.resize(shp2);
217  }
218  tSysSum = 0.0;
219  tSysSqSum = 0.0;
220  Array<Float> tSys;
221
222  // Scan and row tracking
223  Int oldScanID = 0;
224  Int outScanID = 0;
225  Int scanID = 0;
226  Int rowStart = 0;
227  Int nAccum = 0;
228  Int tableStart = 0;
229
230  // Source and FreqID
231  String sourceName, oldSourceName, sourceNameStart;
232  Vector<uInt> freqID, freqIDStart, oldFreqID;
233
234  // Loop over tables
235  Float fac = 1.0;
236  const uInt nTables = in.size();
237  for (uInt iTab=0; iTab<nTables; iTab++) {
238
239    // Should check that the frequency tables don't change if doing
240    // FreqAlignment
241   
242    // Attach columns to Table
243     const Table& tabIn = in[iTab]->table();
244     tSysCol.attach(tabIn, "TSYS");
245     mjdCol.attach(tabIn, "TIME");
246     srcNameCol.attach(tabIn, "SRCNAME");
247     intCol.attach(tabIn, "INTERVAL");
248     fqIDCol.attach(tabIn, "FREQID");
249     scanIDCol.attach(tabIn, "SCANID");
250
251     // Loop over rows in Table
252     const uInt nRows = in[iTab]->nRow();
253     for (uInt iRow=0; iRow<nRows; iRow++) {
254       // Check conformance
255        IPosition shp2 = in[iTab]->rowAsMaskedArray(iRow).shape();
256        if (!shp.isEqual(shp2)) {
257          delete pTabOut;
258           throw (AipsError("Shapes for all rows must be the same"));
259        }
260
261        // If we are not doing scan averages, make checks for source
262        // and frequency setup and warn if averaging across them
263        scanIDCol.getScalar(iRow, scanID);
264
265        // Get quantities from columns
266        srcNameCol.getScalar(iRow, sourceName);
267        mjdCol.get(iRow, time);
268        tSysCol.get(iRow, tSys);
269        intCol.get(iRow, interval);
270        fqIDCol.get(iRow, freqID);
271
272        // Initialize first source and freqID
273        if (iRow==0 && iTab==0) {
274          sourceNameStart = sourceName;
275          freqIDStart = freqID;
276        }
277
278        // If we are doing scan averages, see if we are at the end of
279        // an accumulation period (scan).  We must check soutce names
280        // too, since we might have two tables with one scan each but
281        // different source names; we shouldn't average different
282        // sources together
283        if (scanAv && ( (scanID != oldScanID)  ||
284                        (iRow==0 && iTab>0 && sourceName!=oldSourceName))) {
285
286          // Normalize data in 'sum' accumulation array according to
287          // weighting scheme
288           normalize(sum, sumSq, tSysSqSum, nPts, intSum, wtType,
289                     asap::ChanAxis, nAxesSub);
290
291           // Get ScanContainer for the first row of this averaged Scan
292           SDContainer scOut = in[iTab]->getSDContainer(rowStart);
293
294           // Fill scan container. The source and freqID come from the
295           // first row of the first table that went into this average
296           // ( should be the same for all rows in the scan average)
297
298           Float nR(nAccum);
299           fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
300                   timeSum/nR, intSum, sourceNameStart, freqIDStart);
301           
302           // Write container out to Table
303           pTabOut->putSDContainer(scOut);
304           
305           // Reset accumulators           
306           sum = 0.0;
307           sumSq = 0.0;
308           nAccum = 0;
309
310           tSysSum =0.0;
311           tSysSqSum =0.0;
312           timeSum = 0.0;
313           intSum = 0.0;
314           nPts = 0.0;
315
316           // Increment
317           rowStart = iRow;              // First row for next accumulation
318           tableStart = iTab;            // First table for next accumulation
319           sourceNameStart = sourceName; // First source name for next
320                                         // accumulation
321           freqIDStart = freqID;         // First FreqID for next accumulation
322
323           oldScanID = scanID;
324           outScanID += 1;               // Scan ID for next
325                                         // accumulation period
326        }
327
328        // Accumulate
329        accumulate(timeSum, intSum, nAccum, sum, sumSq, nPts,
330                   tSysSum, tSysSqSum, tSys,
331                   nInc, mask, time, interval, in, iTab, iRow, asap::ChanAxis,
332                   nAxesSub, useMask, wtType);
333        oldSourceName = sourceName;
334        oldFreqID = freqID;
335     }
336  }
337
338  // OK at this point we have accumulation data which is either
339  //   - accumulated from all tables into one row
340  // or
341  //   - accumulated from the last scan average
342  //
343  // Normalize data in 'sum' accumulation array according to weighting
344  // scheme
345
346  normalize(sum, sumSq, tSysSqSum, nPts, intSum, wtType,
347            asap::ChanAxis, nAxesSub);
348
349  // Create and fill container.  The container we clone will be from
350  // the last Table and the first row that went into the current
351  // accumulation.  It probably doesn't matter that much really...
352  Float nR(nAccum);
353  SDContainer scOut = in[tableStart]->getSDContainer(rowStart);
354  fillSDC(scOut, sum.getMask(), sum.getArray(), tSysSum/nR, outScanID,
355          timeSum/nR, intSum, sourceNameStart, freqIDStart);
356  pTabOut->putSDContainer(scOut);
357  pTabOut->resetCursor();
358
359  return CountedPtr<SDMemTable>(pTabOut);
360}
361
362
363
364CountedPtr<SDMemTable>
365SDMath::binaryOperate(const CountedPtr<SDMemTable>& left,
366                      const CountedPtr<SDMemTable>& right,
367                      const String& op, Bool preserve, Bool doTSys) const
368{
369
370  // Check operator
371  String op2(op);
372  op2.upcase();
373  uInt what = 0;
374  if (op2=="ADD") {
375     what = 0;
376  } else if (op2=="SUB") {
377     what = 1;
378  } else if (op2=="MUL") {
379     what = 2;
380  } else if (op2=="DIV") {
381     what = 3;
382  } else if (op2=="QUOTIENT") {
383     what = 4;
384     doTSys = True;
385  } else {
386    throw( AipsError("Unrecognized operation"));
387  }
388
389  // Check rows
390  const uInt nRowLeft = left->nRow();
391  const uInt nRowRight = right->nRow();
392  Bool ok = (nRowRight==1 && nRowLeft>0) ||
393            (nRowRight>=1 && nRowLeft==nRowRight);
394  if (!ok) {
395     throw (AipsError("The right Scan Table can have one row or the same number of rows as the left Scan Table"));
396  }
397
398  // Input Tables
399  const Table& tLeft = left->table();
400  const Table& tRight = right->table();
401
402  // TSys columns
403  ROArrayColumn<Float> tSysLeftCol, tSysRightCol;
404  if (doTSys) {
405    tSysLeftCol.attach(tLeft, "TSYS");
406    tSysRightCol.attach(tRight, "TSYS");
407  }
408
409  // First row for right
410  Array<Float> tSysLeftArr, tSysRightArr;
411  if (doTSys) tSysRightCol.get(0, tSysRightArr);
412  MaskedArray<Float>* pMRight =
413    new MaskedArray<Float>(right->rowAsMaskedArray(0));
414
415  IPosition shpRight = pMRight->shape();
416
417  // Output Table cloned from left
418  SDMemTable* pTabOut = new SDMemTable(*left, True);
419  pTabOut->appendToHistoryTable(right->getHistoryTable());
420
421  // Loop over rows
422  for (uInt i=0; i<nRowLeft; i++) {
423   
424    // Get data
425    MaskedArray<Float> mLeft(left->rowAsMaskedArray(i));
426    IPosition shpLeft = mLeft.shape();
427    if (doTSys) tSysLeftCol.get(i, tSysLeftArr);
428   
429    if (nRowRight>1) {
430      delete pMRight;
431      pMRight = new MaskedArray<Float>(right->rowAsMaskedArray(i));
432      shpRight = pMRight->shape();
433      if (doTSys) tSysRightCol.get(i, tSysRightArr);
434    }
435
436    if (!shpRight.isEqual(shpLeft)) {
437      delete pTabOut;
438      delete pMRight;
439      throw(AipsError("left and right scan tables are not conformant"));
440    }
441    if (doTSys) {
442      if (!tSysRightArr.shape().isEqual(tSysRightArr.shape())) {
443        delete pTabOut;
444        delete pMRight;
445        throw(AipsError("left and right Tsys data are not conformant"));
446      }
447      if (!shpRight.isEqual(tSysRightArr.shape())) {
448        delete pTabOut;
449        delete pMRight;
450        throw(AipsError("left and right scan tables are not conformant"));
451      }
452    }
453
454    // Make container
455     SDContainer sc = left->getSDContainer(i);
456
457     // Operate on data and TSys
458     if (what==0) {                               
459        MaskedArray<Float> tmp = mLeft + *pMRight;
460        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
461        if (doTSys) sc.putTsys(tSysLeftArr+tSysRightArr);
462     } else if (what==1) {
463        MaskedArray<Float> tmp = mLeft - *pMRight;
464        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
465        if (doTSys) sc.putTsys(tSysLeftArr-tSysRightArr);
466     } else if (what==2) {
467        MaskedArray<Float> tmp = mLeft * *pMRight;
468        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
469        if (doTSys) sc.putTsys(tSysLeftArr*tSysRightArr);
470     } else if (what==3) {
471        MaskedArray<Float> tmp = mLeft / *pMRight;
472        putDataInSDC(sc, tmp.getArray(), tmp.getMask());
473        if (doTSys) sc.putTsys(tSysLeftArr/tSysRightArr);
474     } else if (what==4) {
475       if (preserve) {     
476         MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) -
477           tSysRightArr;
478         putDataInSDC(sc, tmp.getArray(), tmp.getMask());
479       } else {
480         MaskedArray<Float> tmp = (tSysRightArr * mLeft / *pMRight) -
481           tSysLeftArr;
482         putDataInSDC(sc, tmp.getArray(), tmp.getMask());
483       }
484       sc.putTsys(tSysRightArr);
485     }
486
487     // Put new row in output Table
488     pTabOut->putSDContainer(sc);
489  }
490  if (pMRight) delete pMRight;
491  pTabOut->resetCursor();
492 
493  return CountedPtr<SDMemTable>(pTabOut);
494}
495
496
497std::vector<float> SDMath::statistic(const CountedPtr<SDMemTable>& in,
498                                     const Vector<Bool>& mask,
499                                     const String& which, Int row) const
500//
501// Perhaps iteration over pol/beam/if should be in here
502// and inside the nrow iteration ?
503//
504{
505  const uInt nRow = in->nRow();
506
507// Specify cursor location
508
509  IPosition start, end;
510  Bool doAll = False;
511  setCursorSlice (start, end, doAll, *in);
512
513// Loop over rows
514
515  const uInt nEl = mask.nelements();
516  uInt iStart = 0;
517  uInt iEnd = in->nRow()-1;
518// 
519  if (row>=0) {
520     iStart = row;
521     iEnd = row;
522  }
523//
524  std::vector<float> result(iEnd-iStart+1);
525  for (uInt ii=iStart; ii <= iEnd; ++ii) {
526
527// Get row and deconstruct
528
529     MaskedArray<Float> dataIn = (in->rowAsMaskedArray(ii))(start,end);
530     Array<Float> v = dataIn.getArray().nonDegenerate();
531     Array<Bool>  m = dataIn.getMask().nonDegenerate();
532
533// Access desired piece of data
534
535//     Array<Float> v((arr(start,end)).nonDegenerate());
536//     Array<Bool> m((barr(start,end)).nonDegenerate());
537
538// Apply OTF mask
539
540     MaskedArray<Float> tmp;
541     if (m.nelements()==nEl) {
542       tmp.setData(v,m&&mask);
543     } else {
544       tmp.setData(v,m);
545     }
546
547// Get statistic
548
549     result[ii-iStart] = mathutil::statistics(which, tmp);
550  }
551//
552  return result;
553}
554
555
556SDMemTable* SDMath::bin(const SDMemTable& in, Int width) const
557{
558  SDHeader sh = in.getSDHeader();
559  SDMemTable* pTabOut = new SDMemTable(in, True);
560
561// Bin up SpectralCoordinates
562
563  IPosition factors(1);
564  factors(0) = width;
565  for (uInt j=0; j<in.nCoordinates(); ++j) {
566    CoordinateSystem cSys;
567    cSys.addCoordinate(in.getSpectralCoordinate(j));
568    CoordinateSystem cSysBin =
569      CoordinateUtil::makeBinnedCoordinateSystem(factors, cSys, False);
570//
571    SpectralCoordinate sCBin = cSysBin.spectralCoordinate(0);
572    pTabOut->setCoordinate(sCBin, j);
573  }
574
575// Use RebinLattice to find shape
576
577  IPosition shapeIn(1,sh.nchan);
578  IPosition shapeOut = RebinLattice<Float>::rebinShape(shapeIn, factors);
579  sh.nchan = shapeOut(0);
580  pTabOut->putSDHeader(sh);
581
582// Loop over rows and bin along channel axis
583 
584  for (uInt i=0; i < in.nRow(); ++i) {
585    SDContainer sc = in.getSDContainer(i);
586//
587    Array<Float> tSys(sc.getTsys());                           // Get it out before sc changes shape
588
589// Bin up spectrum
590
591    MaskedArray<Float> marr(in.rowAsMaskedArray(i));
592    MaskedArray<Float> marrout;
593    LatticeUtilities::bin(marrout, marr, asap::ChanAxis, width);
594
595// Put back the binned data and flags
596
597    IPosition ip2 = marrout.shape();
598    sc.resize(ip2);
599//
600    putDataInSDC(sc, marrout.getArray(), marrout.getMask());
601
602// Bin up Tsys. 
603
604    Array<Bool> allGood(tSys.shape(),True);
605    MaskedArray<Float> tSysIn(tSys, allGood, True);
606//
607    MaskedArray<Float> tSysOut;   
608    LatticeUtilities::bin(tSysOut, tSysIn, asap::ChanAxis, width);
609    sc.putTsys(tSysOut.getArray());
610//
611    pTabOut->putSDContainer(sc);
612  }
613  return pTabOut;
614}
615
616SDMemTable* SDMath::resample(const SDMemTable& in, const String& methodStr,
617                             Float width) const
618//
619// Should add the possibility of width being specified in km/s. This means
620// that for each freqID (SpectralCoordinate) we will need to convert to an
621// average channel width (say at the reference pixel).  Then we would need 
622// to be careful to make sure each spectrum (of different freqID)
623// is the same length.
624//
625{
626   Bool doVel = False;
627   if (doVel) {
628      for (uInt j=0; j<in.nCoordinates(); ++j) {
629         SpectralCoordinate sC = in.getSpectralCoordinate(j);
630      }
631   }
632
633// Interpolation method
634
635  InterpolateArray1D<Double,Float>::InterpolationMethod interp;
636  convertInterpString(interp, methodStr);
637  Int interpMethod(interp);
638
639// Make output table
640
641  SDMemTable* pTabOut = new SDMemTable(in, True);
642
643// Resample SpectralCoordinates (one per freqID)
644
645  const uInt nCoord = in.nCoordinates();
646  Vector<Float> offset(1,0.0);
647  Vector<Float> factors(1,1.0/width);
648  Vector<Int> newShape;
649  for (uInt j=0; j<in.nCoordinates(); ++j) {
650    CoordinateSystem cSys;
651    cSys.addCoordinate(in.getSpectralCoordinate(j));
652    CoordinateSystem cSys2 = cSys.subImage(offset, factors, newShape);
653    SpectralCoordinate sC = cSys2.spectralCoordinate(0);
654//
655    pTabOut->setCoordinate(sC, j);
656  }
657
658// Get header
659
660  SDHeader sh = in.getSDHeader();
661
662// Generate resampling vectors
663
664  const uInt nChanIn = sh.nchan;
665  Vector<Float> xIn(nChanIn);
666  indgen(xIn);
667//
668  Int fac =  Int(nChanIn/width);
669  Vector<Float> xOut(fac+10);          // 10 to be safe - resize later
670  uInt i = 0;
671  Float x = 0.0;
672  Bool more = True;
673  while (more) {
674    xOut(i) = x;
675//
676    i++;
677    x += width;
678    if (x>nChanIn-1) more = False;
679  }
680  const uInt nChanOut = i;
681  xOut.resize(nChanOut,True);
682//
683  IPosition shapeIn(in.rowAsMaskedArray(0).shape());
684  sh.nchan = nChanOut;
685  pTabOut->putSDHeader(sh);
686
687// Loop over rows and resample along channel axis
688
689  Array<Float> valuesOut;
690  Array<Bool> maskOut; 
691  Array<Float> tSysOut;
692  Array<Bool> tSysMaskIn(shapeIn,True);
693  Array<Bool> tSysMaskOut;
694  for (uInt i=0; i < in.nRow(); ++i) {
695
696// Get container
697
698     SDContainer sc = in.getSDContainer(i);
699
700// Get data and Tsys
701   
702     const Array<Float>& tSysIn = sc.getTsys();
703     const MaskedArray<Float>& dataIn(in.rowAsMaskedArray(i));
704     Array<Float> valuesIn = dataIn.getArray();
705     Array<Bool> maskIn = dataIn.getMask();
706
707// Interpolate data
708
709     InterpolateArray1D<Float,Float>::interpolate(valuesOut, maskOut, xOut,
710                                                  xIn, valuesIn, maskIn,
711                                                  interpMethod, True, True);
712     sc.resize(valuesOut.shape());
713     putDataInSDC(sc, valuesOut, maskOut);
714
715// Interpolate TSys
716
717     InterpolateArray1D<Float,Float>::interpolate(tSysOut, tSysMaskOut, xOut,
718                                                  xIn, tSysIn, tSysMaskIn,
719                                                  interpMethod, True, True);
720    sc.putTsys(tSysOut);
721
722// Put container in output
723
724    pTabOut->putSDContainer(sc);
725  }
726//
727  return pTabOut;
728}
729
730SDMemTable* SDMath::unaryOperate(const SDMemTable& in, Float val, Bool doAll,
731                                 uInt what, Bool doTSys) const
732//
733// what = 0   Multiply
734//        1   Add
735{
736   SDMemTable* pOut = new SDMemTable(in,False);
737   const Table& tOut = pOut->table();
738   ArrayColumn<Float> specCol(tOut,"SPECTRA"); 
739   ArrayColumn<Float> tSysCol(tOut,"TSYS"); 
740   Array<Float> tSysArr;
741
742// Get data slice bounds
743
744   IPosition start, end;
745   setCursorSlice (start, end, doAll, in);
746//
747   for (uInt i=0; i<tOut.nrow(); i++) {
748
749// Modify data
750
751      MaskedArray<Float> dataIn(pOut->rowAsMaskedArray(i));
752      MaskedArray<Float> dataIn2 = dataIn(start,end);    // Reference
753      if (what==0) {
754         dataIn2 *= val;
755      } else if (what==1) {
756         dataIn2 += val;
757      }
758      specCol.put(i, dataIn.getArray());
759
760// Modify Tsys
761
762      if (doTSys) {
763         tSysCol.get(i, tSysArr);
764         Array<Float> tSysArr2 = tSysArr(start,end);     // Reference
765         if (what==0) {
766            tSysArr2 *= val;
767         } else if (what==1) {
768            tSysArr2 += val;
769         }
770         tSysCol.put(i, tSysArr);
771      }
772   }
773//
774   return pOut;
775}
776
777SDMemTable* SDMath::averagePol(const SDMemTable& in, const Vector<Bool>& mask,
778                               const String& weightStr) const
779//
780// Average all polarizations together, weighted by variance
781//
782{
783   WeightType wtType = NONE;
784   convertWeightString(wtType, weightStr, True);
785
786// Create output Table and reshape number of polarizations
787
788  Bool clear=True;
789  SDMemTable* pTabOut = new SDMemTable(in, clear);
790  SDHeader header = pTabOut->getSDHeader();
791  header.npol = 1;
792  pTabOut->putSDHeader(header);
793//
794  const Table& tabIn = in.table();
795
796// Shape of input and output data
797
798  const IPosition& shapeIn = in.rowAsMaskedArray(0).shape();
799  IPosition shapeOut(shapeIn);
800  shapeOut(asap::PolAxis) = 1;                          // Average all polarizations
801  if (shapeIn(asap::PolAxis)==1) {
802    delete  pTabOut;
803    throw(AipsError("The input has only one polarisation"));
804  }
805//
806  const uInt nRows = in.nRow();
807  const uInt nChan = shapeIn(asap::ChanAxis);
808  AlwaysAssert(asap::nAxes==4,AipsError);
809  const IPosition vecShapeOut(4,1,1,1,nChan);     // A multi-dim form of a Vector shape
810  IPosition start(4), end(4);
811
812// Output arrays
813
814  Array<Float> outData(shapeOut, 0.0);
815  Array<Bool> outMask(shapeOut, True);
816  const IPosition axes(2, asap::PolAxis, asap::ChanAxis);              // pol-channel plane
817
818// Attach Tsys column if needed
819
820  ROArrayColumn<Float> tSysCol;
821  Array<Float> tSys;
822  if (wtType==TSYS) {
823     tSysCol.attach(tabIn,"TSYS");
824  }
825//
826  const Bool useMask = (mask.nelements() == shapeIn(asap::ChanAxis));
827
828// Loop over rows
829
830   for (uInt iRow=0; iRow<nRows; iRow++) {
831
832// Get data for this row
833
834      MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
835      Array<Float>& arr = marr.getRWArray();
836      const Array<Bool>& barr = marr.getMask();
837     
838// Get Tsys
839
840      if (wtType==TSYS) {
841         tSysCol.get(iRow,tSys);
842      }
843
844// Make iterators to iterate by pol-channel planes
845// The tSys array is empty unless wtType=TSYS so only
846// access the iterator is that is the case
847
848      ReadOnlyArrayIterator<Float> itDataPlane(arr, axes);
849      ReadOnlyArrayIterator<Bool> itMaskPlane(barr, axes);
850      ReadOnlyArrayIterator<Float>* pItTsysPlane = 0;
851      if (wtType==TSYS)
852        pItTsysPlane = new ReadOnlyArrayIterator<Float>(tSys, axes);
853
854// Accumulations
855
856      Float fac = 1.0;
857      Vector<Float> vecSum(nChan,0.0);
858
859// Iterate through data by pol-channel planes
860
861      while (!itDataPlane.pastEnd()) {
862
863// Iterate through plane by polarization  and accumulate Vectors
864
865        Vector<Float> t1(nChan); t1 = 0.0;
866        Vector<Bool> t2(nChan); t2 = True;
867        Float tSys = 0.0;
868        MaskedArray<Float> vecSum(t1,t2);
869        Float norm = 0.0;
870        {
871           ReadOnlyVectorIterator<Float> itDataVec(itDataPlane.array(), 1);
872           ReadOnlyVectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
873//
874           ReadOnlyVectorIterator<Float>* pItTsysVec = 0;
875           if (wtType==TSYS) {
876              pItTsysVec =
877                new ReadOnlyVectorIterator<Float>(pItTsysPlane->array(), 1);
878           }             
879//
880           while (!itDataVec.pastEnd()) {     
881
882// Create MA of data & mask (optionally including OTF mask) and  get variance for this spectrum
883
884              if (useMask) {
885                 const MaskedArray<Float> spec(itDataVec.vector(),
886                                               mask&&itMaskVec.vector());
887                 if (wtType==VAR) {
888                    fac = 1.0 / variance(spec);
889                 } else if (wtType==TSYS) {
890                    tSys = pItTsysVec->vector()[0];      // Drop pseudo channel dependency
891                    fac = 1.0 / tSys / tSys;
892                 }                   
893              } else {
894                 const MaskedArray<Float> spec(itDataVec.vector(),
895                                               itMaskVec.vector());
896                 if (wtType==VAR) {
897                    fac = 1.0 / variance(spec);
898                 } else if (wtType==TSYS) {
899                    tSys = pItTsysVec->vector()[0];      // Drop pseudo channel dependency
900                    fac = 1.0 / tSys / tSys;
901                 }
902              }
903
904// Normalize spectrum (without OTF mask) and accumulate
905
906              const MaskedArray<Float> spec(fac*itDataVec.vector(),
907                                            itMaskVec.vector());
908              vecSum += spec;
909              norm += fac;
910
911// Next
912
913              itDataVec.next();
914              itMaskVec.next();
915              if (wtType==TSYS) pItTsysVec->next();
916           }
917           
918// Clean up
919
920           if (pItTsysVec) {
921              delete pItTsysVec;
922              pItTsysVec = 0;
923           }           
924        }
925
926// Normalize summed spectrum
927
928        vecSum /= norm;
929
930// FInd position in input data array.  We are iterating by pol-channel
931// plane so all that will change is beam and IF and that's what we want.
932
933        IPosition pos = itDataPlane.pos();
934
935// Write out data. This is a bit messy. We have to reform the Vector
936// accumulator into an Array of shape (1,1,1,nChan)
937
938        start = pos;
939        end = pos;
940        end(asap::ChanAxis) = nChan-1;
941        outData(start,end) = vecSum.getArray().reform(vecShapeOut);
942        outMask(start,end) = vecSum.getMask().reform(vecShapeOut);
943
944// Step to next beam/IF combination
945
946        itDataPlane.next();
947        itMaskPlane.next();
948        if (wtType==TSYS) pItTsysPlane->next();
949      }
950
951// Generate output container and write it to output table
952
953      SDContainer sc = in.getSDContainer();
954      sc.resize(shapeOut);
955//
956      putDataInSDC(sc, outData, outMask);
957      pTabOut->putSDContainer(sc);
958//
959      if (wtType==TSYS) {
960         delete pItTsysPlane;
961         pItTsysPlane = 0;
962      }
963   }
964
965// Set polarization cursor to 0
966
967  pTabOut->setPol(0);
968//
969  return pTabOut;
970}
971
972
973SDMemTable* SDMath::smooth(const SDMemTable& in,
974                           const casa::String& kernelType,
975                           casa::Float width, Bool doAll) const
976//
977// Should smooth TSys as well
978//
979{
980
981  // Number of channels
982   const uInt nChan = in.nChan();
983
984   // Generate Kernel
985   VectorKernel::KernelTypes type = VectorKernel::toKernelType(kernelType);
986   Vector<Float> kernel = VectorKernel::make(type, width, nChan, True, False);
987
988   // Generate Convolver
989   IPosition shape(1,nChan);
990   Convolver<Float> conv(kernel, shape);
991
992   // New Table
993   SDMemTable* pTabOut = new SDMemTable(in,True);
994
995   // Output Vectors
996   Vector<Float> valuesOut(nChan);
997   Vector<Bool> maskOut(nChan);
998
999   // Get data slice bounds
1000   IPosition start, end;
1001   setCursorSlice (start, end, doAll, in);
1002
1003   // Loop over rows in Table
1004   for (uInt ri=0; ri < in.nRow(); ++ri) {
1005
1006     // Get slice of data
1007      MaskedArray<Float> dataIn = in.rowAsMaskedArray(ri);
1008
1009      // Deconstruct and get slices which reference these arrays
1010      Array<Float> valuesIn = dataIn.getArray();
1011      Array<Bool> maskIn = dataIn.getMask();
1012
1013      Array<Float> valuesIn2 = valuesIn(start,end);       // ref to valuesIn
1014      Array<Bool> maskIn2 = maskIn(start,end);
1015
1016      // Iterate through by spectra
1017      VectorIterator<Float> itValues(valuesIn2, asap::ChanAxis);
1018      VectorIterator<Bool> itMask(maskIn2, asap::ChanAxis);
1019      while (!itValues.pastEnd()) {
1020       
1021        // Smooth
1022        if (kernelType==VectorKernel::HANNING) {
1023          mathutil::hanning(valuesOut, maskOut, itValues.vector(),
1024                            itMask.vector());
1025          itMask.vector() = maskOut;
1026        } else {
1027          mathutil::replaceMaskByZero(itValues.vector(), itMask.vector());
1028          conv.linearConv(valuesOut, itValues.vector());
1029        }
1030
1031        itValues.vector() = valuesOut;
1032        itValues.next();
1033        itMask.next();
1034      }
1035     
1036      // Create and put back
1037      SDContainer sc = in.getSDContainer(ri);
1038      putDataInSDC(sc, valuesIn, maskIn);
1039
1040      pTabOut->putSDContainer(sc);
1041   }
1042
1043  return pTabOut;
1044}
1045
1046
1047
1048SDMemTable* SDMath::convertFlux(const SDMemTable& in, Float D, Float etaAp,
1049                                Float JyPerK, Bool doAll) const
1050//
1051// etaAp = aperture efficiency (-1 means find)
1052// D     = geometric diameter (m)  (-1 means find)
1053// JyPerK
1054//
1055{
1056  SDHeader sh = in.getSDHeader();
1057  SDMemTable* pTabOut = new SDMemTable(in, True);
1058
1059  // Find out how to convert values into Jy and K (e.g. units might be
1060  // mJy or mK) Also automatically find out what we are converting to
1061  // according to the flux unit
1062  Unit fluxUnit(sh.fluxunit);
1063  Unit K(String("K"));
1064  Unit JY(String("Jy"));
1065
1066  Bool toKelvin = True;
1067  Double cFac = 1.0;   
1068  if (fluxUnit==JY) {
1069    cout << "Converting to K" << endl;
1070   
1071    Quantum<Double> t(1.0,fluxUnit);
1072    Quantum<Double> t2 = t.get(JY);
1073    cFac = (t2 / t).getValue();               // value to Jy
1074   
1075    toKelvin = True;
1076    sh.fluxunit = "K";
1077  } else if (fluxUnit==K) {
1078    cout << "Converting to Jy" << endl;
1079   
1080    Quantum<Double> t(1.0,fluxUnit);
1081    Quantum<Double> t2 = t.get(K);
1082    cFac = (t2 / t).getValue();              // value to K
1083   
1084    toKelvin = False;
1085    sh.fluxunit = "Jy";
1086  } else {
1087    throw(AipsError("Unrecognized brightness units in Table - must be consistent with Jy or K"));
1088  }
1089  pTabOut->putSDHeader(sh);
1090 
1091  // Make sure input values are converted to either Jy or K first...
1092  Float factor = cFac;
1093
1094  // Select method
1095  if (JyPerK>0.0) {
1096    factor *= JyPerK;
1097    if (toKelvin) factor = 1.0 / JyPerK;
1098    cout << "Jy/K = " << JyPerK << endl;
1099    Vector<Float> factors(in.nRow(), factor);
1100    scaleByVector(pTabOut, in, doAll, factors, False);
1101  } else if (etaAp>0.0) {
1102    Bool throwIt = True;
1103    Instrument inst = SDAttr::convertInstrument (sh.antennaname, throwIt);
1104    SDAttr sda;
1105    if (D < 0) D = sda.diameter(inst);
1106    Float JyPerK = SDAttr::findJyPerK (etaAp,D);
1107    cout << "Jy/K = " << JyPerK << endl;
1108    factor *= JyPerK;
1109    if (toKelvin) {
1110      factor = 1.0 / factor;
1111    }
1112
1113    Vector<Float> factors(in.nRow(), factor);
1114    scaleByVector(pTabOut, in, doAll, factors, False);
1115  } else {
1116   
1117    // OK now we must deal with automatic look up of values.
1118    // We must also deal with the fact that the factors need
1119    // to be computed per IF and may be different and may
1120    // change per integration.
1121   
1122    cout << "Looking up conversion factors" << endl;
1123    convertBrightnessUnits (pTabOut, in, toKelvin, cFac, doAll);
1124  }
1125
1126  return pTabOut;
1127}
1128
1129
1130SDMemTable* SDMath::gainElevation(const SDMemTable& in,
1131                                  const Vector<Float>& coeffs,
1132                                  const String& fileName,
1133                                  const String& methodStr, Bool doAll) const
1134{
1135
1136  // Get header and clone output table
1137  SDHeader sh = in.getSDHeader();
1138  SDMemTable* pTabOut = new SDMemTable(in, True);
1139
1140  // Get elevation data from SDMemTable and convert to degrees
1141  const Table& tab = in.table();
1142  ROScalarColumn<Float> elev(tab, "ELEVATION");
1143  Vector<Float> x = elev.getColumn();
1144  x *= Float(180 / C::pi);                        // Degrees
1145 
1146  const uInt nC = coeffs.nelements();
1147  if (fileName.length()>0 && nC>0) {
1148    throw(AipsError("You must choose either polynomial coefficients or an ascii file, not both"));
1149  }
1150 
1151  // Correct
1152  if (nC>0 || fileName.length()==0) {
1153    // Find instrument
1154     Bool throwIt = True;
1155     Instrument inst = SDAttr::convertInstrument (sh.antennaname, throwIt);
1156     
1157     // Set polynomial
1158     Polynomial<Float>* pPoly = 0;
1159     Vector<Float> coeff;
1160     String msg;
1161     if (nC>0) {
1162       pPoly = new Polynomial<Float>(nC);
1163       coeff = coeffs;
1164       msg = String("user");
1165     } else {
1166       SDAttr sdAttr;
1167       coeff = sdAttr.gainElevationPoly(inst);
1168       pPoly = new Polynomial<Float>(3);
1169       msg = String("built in");
1170     }
1171     
1172     if (coeff.nelements()>0) {
1173       pPoly->setCoefficients(coeff);
1174     } else {
1175       delete pPoly;
1176       throw(AipsError("There is no known gain-elevation polynomial known for this instrument"));
1177     }
1178     cout << "Making polynomial correction with " << msg << " coefficients" << endl;
1179     const uInt nRow = in.nRow();
1180     Vector<Float> factor(nRow);
1181     for (uInt i=0; i<nRow; i++) {
1182       factor[i] = 1.0 / (*pPoly)(x[i]);
1183     }
1184     delete pPoly;
1185     scaleByVector (pTabOut, in, doAll, factor, True);
1186
1187  } else {
1188   
1189    // Indicate which columns to read from ascii file
1190    String col0("ELEVATION");
1191    String col1("FACTOR");
1192   
1193    // Read and correct
1194   
1195    cout << "Making correction from ascii Table" << endl;
1196    scaleFromAsciiTable (pTabOut, in, fileName, col0, col1,
1197                         methodStr, doAll, x, True);
1198  }
1199
1200  return pTabOut;
1201}
1202 
1203
1204SDMemTable* SDMath::opacity(const SDMemTable& in, Float tau, Bool doAll) const
1205{
1206
1207  // Get header and clone output table
1208
1209  SDHeader sh = in.getSDHeader();
1210  SDMemTable* pTabOut = new SDMemTable(in, True);
1211
1212// Get elevation data from SDMemTable and convert to degrees
1213
1214  const Table& tab = in.table();
1215  ROScalarColumn<Float> elev(tab, "ELEVATION");
1216  Vector<Float> zDist = elev.getColumn();
1217  zDist = Float(C::pi_2) - zDist;
1218
1219// Generate correction factor
1220
1221  const uInt nRow = in.nRow();
1222  Vector<Float> factor(nRow);
1223  Vector<Float> factor2(nRow);
1224  for (uInt i=0; i<nRow; i++) {
1225     factor[i] = exp(tau)/cos(zDist[i]);
1226  }
1227
1228// Correct
1229
1230  scaleByVector (pTabOut, in, doAll, factor, True);
1231
1232  return pTabOut;
1233}
1234
1235
1236void SDMath::rotateXYPhase(SDMemTable& in, Float value, Bool doAll)
1237//
1238// phase in degrees
1239// assumes linear correlations
1240//
1241{
1242  if (in.nPol() != 4) {
1243    throw(AipsError("You must have 4 polarizations to run this function"));
1244  }
1245
1246   SDHeader sh = in.getSDHeader();
1247   Instrument inst = SDAttr::convertInstrument (sh.antennaname, False);
1248   SDAttr sdAtt;
1249   if (sdAtt.feedPolType(inst) != LINEAR) {
1250      throw(AipsError("Only linear polarizations are supported"));
1251   }
1252//   
1253   const Table& tabIn = in.table();
1254   ArrayColumn<Float> specCol(tabIn,"SPECTRA"); 
1255   IPosition start(asap::nAxes,0);
1256   IPosition end(asap::nAxes);
1257
1258// Set cursor slice. Assumes shape the same for all rows
1259 
1260   setCursorSlice (start, end, doAll, in);
1261   IPosition start3(start);
1262   start3(asap::PolAxis) = 2;                 // Real(XY)
1263   IPosition end3(end);
1264   end3(asap::PolAxis) = 2;   
1265//
1266   IPosition start4(start);
1267   start4(asap::PolAxis) = 3;                 // Imag (XY)
1268   IPosition end4(end);
1269   end4(asap::PolAxis) = 3;
1270// 
1271   uInt nRow = in.nRow();
1272   Array<Float> data;
1273   for (uInt i=0; i<nRow;++i) {
1274      specCol.get(i,data);
1275      IPosition shape = data.shape();
1276 
1277      // Get polarization slice references
1278      Array<Float> C3 = data(start3,end3);
1279      Array<Float> C4 = data(start4,end4);
1280   
1281      // Rotate
1282      SDPolUtil::rotatePhase(C3, C4, value);
1283   
1284      // Put
1285      specCol.put(i,data);
1286   }
1287}     
1288
1289
1290void SDMath::rotateLinPolPhase(SDMemTable& in, Float value, Bool doAll)
1291//
1292// phase in degrees
1293// assumes linear correlations
1294//
1295{
1296   if (in.nPol() != 4) {
1297      throw(AipsError("You must have 4 polarizations to run this function"));
1298   }
1299//
1300   SDHeader sh = in.getSDHeader();
1301   Instrument inst = SDAttr::convertInstrument (sh.antennaname, False);
1302   SDAttr sdAtt;
1303   if (sdAtt.feedPolType(inst) != LINEAR) {
1304      throw(AipsError("Only linear polarizations are supported"));
1305   }
1306//   
1307   const Table& tabIn = in.table();
1308   ArrayColumn<Float> specCol(tabIn,"SPECTRA"); 
1309   ROArrayColumn<Float> stokesCol(tabIn,"STOKES"); 
1310   IPosition start(asap::nAxes,0);
1311   IPosition end(asap::nAxes);
1312
1313// Set cursor slice. Assumes shape the same for all rows
1314 
1315   setCursorSlice (start, end, doAll, in);
1316//
1317   IPosition start1(start);
1318   start1(asap::PolAxis) = 0;                // C1 (XX)
1319   IPosition end1(end);
1320   end1(asap::PolAxis) = 0;   
1321//
1322   IPosition start2(start);
1323   start2(asap::PolAxis) = 1;                 // C2 (YY)
1324   IPosition end2(end);
1325   end2(asap::PolAxis) = 1;   
1326//
1327   IPosition start3(start);
1328   start3(asap::PolAxis) = 2;                 // C3 ( Real(XY) )
1329   IPosition end3(end);
1330   end3(asap::PolAxis) = 2;   
1331//
1332   IPosition startI(start);
1333   startI(asap::PolAxis) = 0;                 // I
1334   IPosition endI(end);
1335   endI(asap::PolAxis) = 0;   
1336//
1337   IPosition startQ(start);
1338   startQ(asap::PolAxis) = 1;                 // Q
1339   IPosition endQ(end);
1340   endQ(asap::PolAxis) = 1;   
1341//
1342   IPosition startU(start);
1343   startU(asap::PolAxis) = 2;                 // U
1344   IPosition endU(end);
1345   endU(asap::PolAxis) = 2;   
1346
1347//
1348   uInt nRow = in.nRow();
1349   Array<Float> data, stokes;
1350   for (uInt i=0; i<nRow;++i) {
1351      specCol.get(i,data);
1352      stokesCol.get(i,stokes);
1353      IPosition shape = data.shape();
1354 
1355// Get linear polarization slice references
1356 
1357      Array<Float> C1 = data(start1,end1);
1358      Array<Float> C2 = data(start2,end2);
1359      Array<Float> C3 = data(start3,end3);
1360
1361// Get STokes slice references
1362
1363      Array<Float> I = stokes(startI,endI);
1364      Array<Float> Q = stokes(startQ,endQ);
1365      Array<Float> U = stokes(startU,endU);
1366   
1367// Rotate
1368 
1369      SDPolUtil::rotateLinPolPhase(C1, C2, C3, I, Q, U, value);
1370   
1371// Put
1372   
1373      specCol.put(i,data);
1374   }
1375}     
1376
1377// 'private' functions
1378
1379void SDMath::convertBrightnessUnits (SDMemTable* pTabOut, const SDMemTable& in,
1380                                     Bool toKelvin, Float cFac, Bool doAll) const
1381{
1382
1383// Get header
1384
1385   SDHeader sh = in.getSDHeader();
1386   const uInt nChan = sh.nchan;
1387
1388// Get instrument
1389
1390   Bool throwIt = True;
1391   Instrument inst = SDAttr::convertInstrument (sh.antennaname, throwIt);
1392
1393// Get Diameter (m)
1394
1395   SDAttr sdAtt;
1396
1397// Get epoch of first row
1398
1399   MEpoch dateObs = in.getEpoch(0);
1400
1401// Generate a Vector of correction factors. One per FreqID
1402
1403   SDFrequencyTable sdft = in.getSDFreqTable();
1404   Vector<uInt> freqIDs;
1405//
1406   Vector<Float> freqs(sdft.length());
1407   for (uInt i=0; i<sdft.length(); i++) {
1408      freqs(i) = (nChan/2 - sdft.referencePixel(i))*sdft.increment(i) + sdft.referenceValue(i);
1409   }
1410//
1411   Vector<Float> JyPerK = sdAtt.JyPerK(inst, dateObs, freqs);
1412   cout << "Jy/K = " << JyPerK << endl;
1413   Vector<Float> factors = cFac * JyPerK;
1414   if (toKelvin) factors = Float(1.0) / factors;
1415
1416// Get data slice bounds
1417
1418   IPosition start, end;
1419   setCursorSlice (start, end, doAll, in);
1420   const uInt ifAxis = in.getIF();
1421
1422// Iteration axes
1423
1424   IPosition axes(asap::nAxes-1,0);
1425   for (uInt i=0,j=0; i<asap::nAxes; i++) {
1426      if (i!=asap::IFAxis) {
1427         axes(j++) = i;
1428      }
1429   }
1430
1431// Loop over rows and apply correction factor
1432
1433   Float factor = 1.0; 
1434   const uInt axis = asap::ChanAxis;
1435   for (uInt i=0; i < in.nRow(); ++i) {
1436
1437// Get data
1438
1439      MaskedArray<Float> dataIn = in.rowAsMaskedArray(i);
1440      Array<Float>& values = dataIn.getRWArray();           // Ref to dataIn
1441      Array<Float> values2 = values(start,end);             // Ref to values to dataIn
1442
1443// Get SDCOntainer
1444
1445      SDContainer sc = in.getSDContainer(i);
1446
1447// Get FreqIDs
1448
1449      freqIDs = sc.getFreqMap();
1450
1451// Now the conversion factor depends only upon frequency
1452// So we need to iterate through by IF only giving
1453// us BEAM/POL/CHAN cubes
1454
1455      ArrayIterator<Float> itIn(values2, axes);
1456      uInt ax = 0;
1457      while (!itIn.pastEnd()) {
1458        itIn.array() *= factors(freqIDs(ax));         // Writes back to dataIn
1459        itIn.next();
1460      }
1461
1462// Write out
1463
1464      putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
1465//
1466      pTabOut->putSDContainer(sc);
1467   }
1468}
1469
1470
1471
1472SDMemTable* SDMath::frequencyAlign(const SDMemTable& in,
1473                                   MFrequency::Types freqSystem,
1474                                   const String& refTime,
1475                                   const String& methodStr,
1476                                   Bool perFreqID) const
1477{
1478// Get Header
1479
1480   SDHeader sh = in.getSDHeader();
1481   const uInt nChan = sh.nchan;
1482   const uInt nRows = in.nRow();
1483   const uInt nIF = sh.nif;
1484
1485// Get Table reference
1486
1487   const Table& tabIn = in.table();
1488
1489// Get Columns from Table
1490
1491   ROScalarColumn<Double> mjdCol(tabIn, "TIME");
1492   ROScalarColumn<String> srcCol(tabIn, "SRCNAME");
1493   ROArrayColumn<uInt> fqIDCol(tabIn, "FREQID");
1494   Vector<Double> times = mjdCol.getColumn();
1495
1496// Generate DataDesc table
1497 
1498   Matrix<uInt> ddIdx;
1499   SDDataDesc dDesc;
1500   generateDataDescTable(ddIdx, dDesc, nIF, in, tabIn, srcCol,
1501                          fqIDCol, perFreqID);
1502
1503// Get reference Epoch to time of first row or given String
1504   
1505   Unit DAY(String("d"));
1506   MEpoch::Ref epochRef(in.getTimeReference());
1507   MEpoch refEpoch;
1508   if (refTime.length()>0) {
1509     refEpoch = epochFromString(refTime, in.getTimeReference());
1510   } else {
1511     refEpoch = in.getEpoch(0);
1512   }
1513   cout << "Aligning at reference Epoch " << formatEpoch(refEpoch)
1514        << " in frame " << MFrequency::showType(freqSystem) << endl;
1515   
1516   // Get Reference Position
1517   
1518   MPosition refPos = in.getAntennaPosition();
1519   
1520   // Create FrequencyAligner Block. One FA for each possible
1521   // source/freqID (perFreqID=True) or source/IF (perFreqID=False)
1522   // combination
1523   
1524   PtrBlock<FrequencyAligner<Float>* > a(dDesc.length());
1525   generateFrequencyAligners (a, dDesc, in, nChan, freqSystem, refPos,
1526                              refEpoch, perFreqID);
1527   
1528   // Generate and fill output Frequency Table.  WHen perFreqID=True,
1529   // there is one output FreqID for each entry in the SDDataDesc
1530   // table.  However, in perFreqID=False mode, there may be some
1531   // degeneracy, so we need a little translation map
1532   
1533   SDFrequencyTable freqTabOut = in.getSDFreqTable();
1534   freqTabOut.setLength(0);
1535   Vector<String> units(1);
1536   units = String("Hz");
1537   Bool linear=True;
1538   //
1539   Vector<uInt> ddFQTrans(dDesc.length(),0);
1540   for (uInt i=0; i<dDesc.length(); i++) {
1541
1542     // Get Aligned SC in Hz
1543     
1544     SpectralCoordinate sC = a[i]->alignedSpectralCoordinate(linear);
1545     sC.setWorldAxisUnits(units);
1546     
1547     // Add FreqID
1548     
1549     uInt idx = freqTabOut.addFrequency(sC.referencePixel()[0],
1550                                        sC.referenceValue()[0],
1551                                        sC.increment()[0]);
1552     // output FreqID = ddFQTrans(ddIdx)
1553     ddFQTrans(i) = idx;
1554   }
1555   
1556   // Interpolation method
1557   
1558   InterpolateArray1D<Double,Float>::InterpolationMethod interp;
1559   convertInterpString(interp, methodStr);
1560   
1561   // New output Table
1562   
1563   cout << "Create output table" << endl;
1564   SDMemTable* pTabOut = new SDMemTable(in,True);
1565   pTabOut->putSDFreqTable(freqTabOut);
1566   
1567   // Loop over rows in Table
1568   
1569   Bool extrapolate=False;
1570   const IPosition polChanAxes(2, asap::PolAxis, asap::ChanAxis);
1571   Bool useCachedAbcissa = False;
1572   Bool first = True;
1573   Bool ok;
1574   Vector<Float> yOut;
1575   Vector<Bool> maskOut;
1576   Vector<uInt> freqID(nIF);
1577   uInt ifIdx, faIdx;
1578   Vector<Double> xIn;
1579   //
1580   for (uInt iRow=0; iRow<nRows; ++iRow) {
1581     if (iRow%10==0) {
1582       cout << "Processing row " << iRow << endl;
1583     }
1584     
1585     // Get EPoch
1586     
1587     Quantum<Double> tQ2(times[iRow],DAY);
1588     MVEpoch mv2(tQ2);
1589     MEpoch epoch(mv2, epochRef);
1590     
1591     // Get copy of data
1592     
1593     const MaskedArray<Float>& mArrIn(in.rowAsMaskedArray(iRow));
1594     Array<Float> values = mArrIn.getArray();
1595     Array<Bool> mask = mArrIn.getMask();
1596     
1597     // For each row, the Frequency abcissa will be the same
1598     // regardless of polarization.  For all other axes (IF and BEAM)
1599     // the abcissa will change.  So we iterate through the data by
1600     // pol-chan planes to mimimize the work.  Probably won't work for
1601     // multiple beams at this point.
1602     
1603     ArrayIterator<Float> itValuesPlane(values, polChanAxes);
1604     ArrayIterator<Bool> itMaskPlane(mask, polChanAxes);
1605     while (!itValuesPlane.pastEnd()) {
1606
1607       // Find the IF index and then the FA PtrBlock index
1608       
1609       const IPosition& pos = itValuesPlane.pos();
1610       ifIdx = pos(asap::IFAxis);
1611       faIdx = ddIdx(iRow,ifIdx);
1612       
1613       // Generate abcissa for perIF.  Could cache this in a Matrix on
1614       // a per scan basis.  Pretty expensive doing it for every row.
1615       
1616       if (!perFreqID) {
1617         xIn.resize(nChan);
1618         uInt fqID = dDesc.secID(ddIdx(iRow,ifIdx));
1619         SpectralCoordinate sC = in.getSpectralCoordinate(fqID);
1620           Double w;
1621           for (uInt i=0; i<nChan; i++) {
1622             sC.toWorld(w,Double(i));
1623              xIn[i] = w;
1624           }
1625       }
1626       
1627       VectorIterator<Float> itValuesVec(itValuesPlane.array(), 1);
1628       VectorIterator<Bool> itMaskVec(itMaskPlane.array(), 1);
1629
1630       // Iterate through the plane by vector and align
1631       
1632        first = True;
1633        useCachedAbcissa=False;
1634        while (!itValuesVec.pastEnd()) {     
1635          if (perFreqID) {
1636            ok = a[faIdx]->align (yOut, maskOut, itValuesVec.vector(),
1637                                  itMaskVec.vector(), epoch, useCachedAbcissa,
1638                                  interp, extrapolate);
1639          } else {
1640            ok = a[faIdx]->align (yOut, maskOut, xIn, itValuesVec.vector(),
1641                                  itMaskVec.vector(), epoch, useCachedAbcissa,
1642                                  interp, extrapolate);
1643          }
1644          //
1645          itValuesVec.vector() = yOut;
1646          itMaskVec.vector() = maskOut;
1647          //
1648          itValuesVec.next();
1649          itMaskVec.next();
1650          //
1651          if (first) {
1652            useCachedAbcissa = True;
1653            first = False;
1654          }
1655        }
1656        //
1657        itValuesPlane.next();
1658        itMaskPlane.next();
1659     }
1660     
1661     // Create SDContainer and put back
1662     
1663     SDContainer sc = in.getSDContainer(iRow);
1664     putDataInSDC(sc, values, mask);
1665     
1666     // Set output FreqIDs
1667     
1668     for (uInt i=0; i<nIF; i++) {
1669       uInt idx = ddIdx(iRow,i);               // Index into SDDataDesc table
1670       freqID(i) = ddFQTrans(idx);             // FreqID in output FQ table
1671     }
1672     sc.putFreqMap(freqID);
1673     //
1674     pTabOut->putSDContainer(sc);
1675   }
1676   
1677   // Now we must set the base and extra frames to the input frame
1678   std::vector<string> info = pTabOut->getCoordInfo();
1679   info[1] = MFrequency::showType(freqSystem);   // Conversion frame
1680   info[3] = info[1];                            // Base frame
1681   pTabOut->setCoordInfo(info);
1682
1683   // Clean up PointerBlock   
1684   for (uInt i=0; i<a.nelements(); i++) delete a[i];
1685
1686   return pTabOut;
1687}
1688
1689
1690SDMemTable* SDMath::frequencySwitch(const SDMemTable& in) const
1691{
1692  if (in.nIF() != 2) {
1693    throw(AipsError("nIF != 2 "));
1694  }
1695  Bool clear = True;
1696  SDMemTable* pTabOut = new SDMemTable(in, clear);
1697  const Table& tabIn = in.table();
1698
1699  // Shape of input and output data
1700  const IPosition& shapeIn = in.rowAsMaskedArray(0).shape();
1701
1702  const uInt nRows = in.nRow();
1703  AlwaysAssert(asap::nAxes==4,AipsError);
1704
1705  ROArrayColumn<Float> tSysCol;
1706  Array<Float> tsys;
1707  tSysCol.attach(tabIn,"TSYS");
1708
1709  for (uInt iRow=0; iRow<nRows; iRow++) {
1710    // Get data for this row
1711    MaskedArray<Float> marr(in.rowAsMaskedArray(iRow));
1712    tSysCol.get(iRow, tsys);
1713
1714    // whole Array for IF 0
1715    IPosition start(asap::nAxes,0);
1716    IPosition end = shapeIn-1;
1717    end(asap::IFAxis) = 0;
1718
1719    MaskedArray<Float> on = marr(start,end);
1720    Array<Float> ton = tsys(start,end);
1721    // Make a copy as "src" is a refrence which is manipulated.
1722    // oncopy is needed for the inverse quotient
1723    MaskedArray<Float> oncopy = on.copy();
1724
1725    // whole Array for IF 1
1726    start(asap::IFAxis) = 1;
1727    end(asap::IFAxis) = 1;
1728
1729    MaskedArray<Float> off = marr(start,end);
1730    Array<Float> toff = tsys(start,end);
1731
1732    on /= off; on -= 1.0f;
1733    on *= ton;
1734    off /= oncopy; off -= 1.0f;
1735    off *= toff;
1736
1737    SDContainer sc = in.getSDContainer(iRow);
1738    putDataInSDC(sc, marr.getArray(), marr.getMask());
1739    pTabOut->putSDContainer(sc);
1740  }
1741  return pTabOut;
1742}
1743
1744void SDMath::fillSDC(SDContainer& sc,
1745                     const Array<Bool>& mask,
1746                     const Array<Float>& data,
1747                     const Array<Float>& tSys,
1748                     Int scanID, Double timeStamp,
1749                     Double interval, const String& sourceName,
1750                     const Vector<uInt>& freqID) const
1751{
1752// Data and mask
1753
1754  putDataInSDC(sc, data, mask);
1755
1756// TSys
1757
1758  sc.putTsys(tSys);
1759
1760// Time things
1761
1762  sc.timestamp = timeStamp;
1763  sc.interval = interval;
1764  sc.scanid = scanID;
1765//
1766  sc.sourcename = sourceName;
1767  sc.putFreqMap(freqID);
1768}
1769
1770void SDMath::accumulate(Double& timeSum, Double& intSum, Int& nAccum,
1771                        MaskedArray<Float>& sum, Array<Float>& sumSq,
1772                        Array<Float>& nPts, Array<Float>& tSysSum,
1773                        Array<Float>& tSysSqSum,
1774                        const Array<Float>& tSys, const Array<Float>& nInc,
1775                        const Vector<Bool>& mask, Double time, Double interval,
1776                        const std::vector<CountedPtr<SDMemTable> >& in,
1777                        uInt iTab, uInt iRow, uInt axis,
1778                        uInt nAxesSub, Bool useMask,
1779                        WeightType wtType) const
1780{
1781
1782// Get data
1783
1784   MaskedArray<Float> dataIn(in[iTab]->rowAsMaskedArray(iRow));
1785   Array<Float>& valuesIn = dataIn.getRWArray();           // writable reference
1786   const Array<Bool>& maskIn = dataIn.getMask();          // RO reference
1787//
1788   if (wtType==NONE) {
1789      const MaskedArray<Float> n(nInc,dataIn.getMask());
1790      nPts += n;                               // Only accumulates where mask==T
1791   } else if (wtType==TINT) {
1792
1793// We are weighting the data by integration time.
1794
1795     valuesIn *= Float(interval);
1796
1797   } else if (wtType==VAR) {
1798
1799// We are going to average the data, weighted by the noise for each pol, beam and IF.
1800// So therefore we need to iterate through by spectrum (axis 3)
1801
1802      VectorIterator<Float> itData(valuesIn, axis);
1803      ReadOnlyVectorIterator<Bool> itMask(maskIn, axis);
1804      Float fac = 1.0;
1805      IPosition pos(nAxesSub,0); 
1806//
1807      while (!itData.pastEnd()) {
1808
1809// Make MaskedArray of Vector, optionally apply OTF mask, and find scaling factor
1810
1811         if (useMask) {
1812            MaskedArray<Float> tmp(itData.vector(),mask&&itMask.vector());
1813            fac = 1.0/variance(tmp);
1814         } else {
1815            MaskedArray<Float> tmp(itData.vector(),itMask.vector());
1816            fac = 1.0/variance(tmp);
1817         }
1818
1819// Scale data
1820
1821         itData.vector() *= fac;     // Writes back into 'dataIn'
1822//
1823// Accumulate variance per if/pol/beam averaged over spectrum
1824// This method to get pos2 from itData.pos() is only valid
1825// because the spectral axis is the last one (so we can just
1826// copy the first nAXesSub positions out)
1827
1828         pos = itData.pos().getFirst(nAxesSub);
1829         sumSq(pos) += fac;
1830//
1831         itData.next();
1832         itMask.next();
1833      }
1834   } else if (wtType==TSYS || wtType==TINTSYS) {
1835
1836// We are going to average the data, weighted by 1/Tsys**2 for each pol, beam and IF.
1837// So therefore we need to iterate through by spectrum (axis 3).  Although
1838// Tsys is stored as a vector of length nChan, the values are replicated.
1839// We will take a short cut and just use the value from the first channel
1840// for now.
1841//
1842      VectorIterator<Float> itData(valuesIn, axis);
1843      ReadOnlyVectorIterator<Float> itTSys(tSys, axis);
1844      IPosition pos(nAxesSub,0); 
1845//
1846      Float fac = 1.0;
1847      if (wtType==TINTSYS) fac *= interval;
1848      while (!itData.pastEnd()) {
1849         Float t = itTSys.vector()[0];
1850         fac *= 1.0/t/t;
1851
1852// Scale data
1853
1854         itData.vector() *= fac;     // Writes back into 'dataIn'
1855//
1856// Accumulate Tsys  per if/pol/beam averaged over spectrum
1857// This method to get pos2 from itData.pos() is only valid
1858// because the spectral axis is the last one (so we can just
1859// copy the first nAXesSub positions out)
1860
1861         pos = itData.pos().getFirst(nAxesSub);
1862         tSysSqSum(pos) += fac;
1863//
1864         itData.next();
1865         itTSys.next();
1866      }
1867   }
1868
1869// Accumulate sum of (possibly scaled) data
1870
1871   sum += dataIn;
1872
1873// Accumulate Tsys, time, and interval
1874
1875   tSysSum += tSys;
1876   timeSum += time;
1877   intSum += interval;
1878   nAccum += 1;
1879}
1880
1881
1882void SDMath::normalize(MaskedArray<Float>& sum,
1883                       const Array<Float>& sumSq,
1884                       const Array<Float>& tSysSqSum,
1885                       const Array<Float>& nPts,
1886                       Double intSum,
1887                       WeightType wtType, Int axis,
1888                       Int nAxesSub) const
1889{
1890   IPosition pos2(nAxesSub,0);
1891//
1892   if (wtType==NONE) {
1893
1894// We just average by the number of points accumulated.
1895// We need to make a MA out of nPts so that no divide by
1896// zeros occur
1897
1898      MaskedArray<Float> t(nPts, (nPts>Float(0.0)));
1899      sum /= t;
1900   } else if (wtType==TINT) {
1901
1902// Average by sum of Tint
1903
1904      sum /= Float(intSum);
1905   } else if (wtType==VAR) {
1906
1907// Normalize each spectrum by sum(1/var) where the variance
1908// is worked out for each spectrum
1909
1910      Array<Float>& data = sum.getRWArray();
1911      VectorIterator<Float> itData(data, axis);
1912      while (!itData.pastEnd()) {
1913         pos2 = itData.pos().getFirst(nAxesSub);
1914         itData.vector() /= sumSq(pos2);
1915         itData.next();
1916      }
1917   } else if (wtType==TSYS || wtType==TINTSYS) {
1918   
1919// Normalize each spectrum by sum(1/Tsys**2) (TSYS) or
1920// sum(Tint/Tsys**2) (TINTSYS) where the pseudo
1921// replication over channel for Tsys has been dropped.
1922
1923      Array<Float>& data = sum.getRWArray();
1924      VectorIterator<Float> itData(data, axis);
1925      while (!itData.pastEnd()) {
1926         pos2 = itData.pos().getFirst(nAxesSub);
1927         itData.vector() /= tSysSqSum(pos2);
1928         itData.next();
1929      }
1930   }
1931}
1932
1933
1934
1935
1936void SDMath::setCursorSlice (IPosition& start, IPosition& end, Bool doAll, const SDMemTable& in) const
1937{
1938  const uInt nDim = asap::nAxes;
1939  DebugAssert(nDim==4,AipsError);
1940//
1941  start.resize(nDim);
1942  end.resize(nDim);
1943  if (doAll) {
1944     start = 0;
1945     end(0) = in.nBeam()-1;
1946     end(1) = in.nIF()-1;
1947     end(2) = in.nPol()-1;
1948     end(3) = in.nChan()-1;
1949  } else {
1950     start(0) = in.getBeam();
1951     end(0) = start(0);
1952//
1953     start(1) = in.getIF();
1954     end(1) = start(1);
1955//
1956     start(2) = in.getPol();
1957     end(2) = start(2);
1958//
1959     start(3) = 0;
1960     end(3) = in.nChan()-1;
1961   }
1962}
1963
1964
1965void SDMath::convertWeightString(WeightType& wtType, const String& weightStr,
1966                                 Bool listType) const
1967{
1968  String tStr(weightStr);
1969  tStr.upcase();
1970  String msg;
1971  if (tStr.contains(String("NONE"))) {
1972     wtType = NONE;
1973     msg = String("Weighting type selected : None");
1974  } else if (tStr.contains(String("VAR"))) {
1975     wtType = VAR;
1976     msg = String("Weighting type selected : Variance");
1977  } else if (tStr.contains(String("TINTSYS"))) {
1978       wtType = TINTSYS;
1979       msg = String("Weighting type selected : Tint&Tsys");
1980  } else if (tStr.contains(String("TINT"))) {
1981     wtType = TINT;
1982     msg = String("Weighting type selected : Tint");
1983  } else if (tStr.contains(String("TSYS"))) {
1984     wtType = TSYS;
1985     msg = String("Weighting type selected : Tsys");
1986  } else {
1987     msg = String("Weighting type selected : None");
1988     throw(AipsError("Unrecognized weighting type"));
1989  }
1990//
1991  if (listType) cout << msg << endl;
1992}
1993
1994
1995void SDMath::convertInterpString(casa::InterpolateArray1D<Double,Float>::InterpolationMethod& type, 
1996                                 const casa::String& interp) const
1997{
1998  String tStr(interp);
1999  tStr.upcase();
2000  if (tStr.contains(String("NEAR"))) {
2001     type = InterpolateArray1D<Double,Float>::nearestNeighbour;
2002  } else if (tStr.contains(String("LIN"))) {
2003     type = InterpolateArray1D<Double,Float>::linear;
2004  } else if (tStr.contains(String("CUB"))) {
2005     type = InterpolateArray1D<Double,Float>::cubic;
2006  } else if (tStr.contains(String("SPL"))) {
2007     type = InterpolateArray1D<Double,Float>::spline;
2008  } else {
2009    throw(AipsError("Unrecognized interpolation type"));
2010  }
2011}
2012
2013void SDMath::putDataInSDC(SDContainer& sc, const Array<Float>& data,
2014                          const Array<Bool>& mask) const
2015{
2016    sc.putSpectrum(data);
2017//
2018    Array<uChar> outflags(data.shape());
2019    convertArray(outflags,!mask);
2020    sc.putFlags(outflags);
2021}
2022
2023Table SDMath::readAsciiFile (const String& fileName) const
2024{
2025   String formatString;
2026   Table tbl = readAsciiTable (formatString, Table::Memory, fileName, "", "", False);
2027   return tbl;
2028}
2029
2030
2031
2032void SDMath::scaleFromAsciiTable(SDMemTable* pTabOut,
2033                                 const SDMemTable& in, const String& fileName,
2034                                 const String& col0, const String& col1,
2035                                 const String& methodStr, Bool doAll,
2036                                 const Vector<Float>& xOut, Bool doTSys) const
2037{
2038
2039// Read gain-elevation ascii file data into a Table.
2040
2041  Table geTable = readAsciiFile (fileName);
2042//
2043  scaleFromTable (pTabOut, in, geTable, col0, col1, methodStr, doAll, xOut, doTSys);
2044}
2045
2046void SDMath::scaleFromTable(SDMemTable* pTabOut, const SDMemTable& in,
2047                            const Table& tTable, const String& col0,
2048                            const String& col1,
2049                            const String& methodStr, Bool doAll,
2050                            const Vector<Float>& xOut, Bool doTsys) const
2051{
2052
2053// Get data from Table
2054
2055  ROScalarColumn<Float> geElCol(tTable, col0);
2056  ROScalarColumn<Float> geFacCol(tTable, col1);
2057  Vector<Float> xIn = geElCol.getColumn();
2058  Vector<Float> yIn = geFacCol.getColumn();
2059  Vector<Bool> maskIn(xIn.nelements(),True);
2060
2061// Interpolate (and extrapolate) with desired method
2062
2063   InterpolateArray1D<Double,Float>::InterpolationMethod method;
2064   convertInterpString(method, methodStr);
2065   Int intMethod(method);
2066//
2067   Vector<Float> yOut;
2068   Vector<Bool> maskOut;
2069   InterpolateArray1D<Float,Float>::interpolate(yOut, maskOut, xOut,
2070                                                xIn, yIn, maskIn, intMethod,
2071                                                True, True);
2072// Apply
2073
2074   scaleByVector(pTabOut, in, doAll, Float(1.0)/yOut, doTsys);
2075}
2076
2077
2078void SDMath::scaleByVector(SDMemTable* pTabOut, const SDMemTable& in,
2079                           Bool doAll, const Vector<Float>& factor,
2080                           Bool doTSys) const
2081{
2082
2083// Set up data slice
2084
2085  IPosition start, end;
2086  setCursorSlice (start, end, doAll, in);
2087
2088// Get Tsys column
2089
2090  const Table& tIn = in.table();
2091  ArrayColumn<Float> tSysCol(tIn, "TSYS");
2092  Array<Float> tSys;
2093
2094// Loop over rows and apply correction factor
2095 
2096  const uInt axis = asap::ChanAxis;
2097  for (uInt i=0; i < in.nRow(); ++i) {
2098
2099// Get data
2100
2101     MaskedArray<Float> dataIn(in.rowAsMaskedArray(i));
2102     MaskedArray<Float> dataIn2 = dataIn(start,end);  // reference to dataIn
2103//
2104     if (doTSys) {
2105        tSysCol.get(i, tSys);
2106        Array<Float> tSys2 = tSys(start,end) * factor[i];
2107        tSysCol.put(i, tSys);
2108     }
2109
2110// Apply factor
2111
2112     dataIn2 *= factor[i];
2113
2114// Write out
2115
2116     SDContainer sc = in.getSDContainer(i);
2117     putDataInSDC(sc, dataIn.getArray(), dataIn.getMask());
2118//
2119     pTabOut->putSDContainer(sc);
2120  }
2121}
2122
2123
2124
2125
2126void SDMath::generateDataDescTable (Matrix<uInt>& ddIdx,
2127                                    SDDataDesc& dDesc,
2128                                    uInt nIF,
2129                                    const SDMemTable& in,
2130                                    const Table& tabIn,
2131                                    const ROScalarColumn<String>& srcCol,
2132                                    const ROArrayColumn<uInt>& fqIDCol,
2133                                    Bool perFreqID) const
2134{
2135   const uInt nRows = tabIn.nrow();
2136   ddIdx.resize(nRows,nIF);
2137//
2138   String srcName;
2139   Vector<uInt> freqIDs;
2140   for (uInt iRow=0; iRow<nRows; iRow++) {
2141      srcCol.get(iRow, srcName);
2142      fqIDCol.get(iRow, freqIDs);
2143      const MDirection& dir = in.getDirection(iRow);
2144//
2145      if (perFreqID) {
2146
2147// One entry per source/freqID pair
2148
2149         for (uInt iIF=0; iIF<nIF; iIF++) {
2150            ddIdx(iRow,iIF) = dDesc.addEntry(srcName, freqIDs[iIF], dir, 0);
2151         }
2152      } else {
2153
2154// One entry per source/IF pair.  Hang onto the FreqID as well
2155
2156         for (uInt iIF=0; iIF<nIF; iIF++) {
2157            ddIdx(iRow,iIF) = dDesc.addEntry(srcName, iIF, dir, freqIDs[iIF]);
2158         }
2159      }
2160   }
2161}
2162
2163
2164
2165
2166
2167MEpoch SDMath::epochFromString(const String& str, MEpoch::Types timeRef) const
2168{
2169   Quantum<Double> qt;
2170   if (MVTime::read(qt,str)) {
2171      MVEpoch mv(qt);
2172      MEpoch me(mv, timeRef);
2173      return me;
2174   } else {
2175      throw(AipsError("Invalid format for Epoch string"));
2176   }
2177}
2178
2179
2180String SDMath::formatEpoch(const MEpoch& epoch)  const
2181{
2182   MVTime mvt(epoch.getValue());
2183   return mvt.string(MVTime::YMD) + String(" (") + epoch.getRefString() + String(")");
2184}
2185
2186
2187
2188void SDMath::generateFrequencyAligners(PtrBlock<FrequencyAligner<Float>* >& a,
2189                                       const SDDataDesc& dDesc,
2190                                       const SDMemTable& in, uInt nChan,
2191                                       MFrequency::Types system,
2192                                       const MPosition& refPos,
2193                                       const MEpoch& refEpoch,
2194                                       Bool perFreqID) const
2195{
2196   for (uInt i=0; i<dDesc.length(); i++) {
2197      uInt ID = dDesc.ID(i);
2198      uInt secID = dDesc.secID(i);
2199      const MDirection& refDir = dDesc.secDir(i);
2200//
2201      if (perFreqID) {
2202
2203// One aligner per source/FreqID pair. 
2204
2205         SpectralCoordinate sC = in.getSpectralCoordinate(ID);
2206         a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
2207      } else {
2208
2209// One aligner per source/IF pair.  But we still need the FreqID to
2210// get the right SC.  Hence the messing about with the secondary ID
2211
2212         SpectralCoordinate sC = in.getSpectralCoordinate(secID);
2213         a[i] = new FrequencyAligner<Float>(sC, nChan, refEpoch, refDir, refPos, system);
2214      }
2215   }
2216}
2217
2218Vector<uInt> SDMath::getRowRange(const SDMemTable& in) const
2219{
2220   Vector<uInt> range(2);
2221   range[0] = 0;
2222   range[1] = in.nRow()-1;
2223   return range;
2224}
2225   
2226
2227Bool SDMath::rowInRange(uInt i, const Vector<uInt>& range) const
2228{
2229   return (i>=range[0] && i<=range[1]);
2230}
2231
Note: See TracBrowser for help on using the repository browser.