| 1 | from asap.asaplot import ASAPlot
|
|---|
| 2 | from asap import rcParams
|
|---|
| 3 |
|
|---|
| 4 | class asapplotter:
|
|---|
| 5 | """
|
|---|
| 6 | The ASAP plotter.
|
|---|
| 7 | By default the plotter is set up to plot polarisations
|
|---|
| 8 | 'colour stacked' and scantables across panels.
|
|---|
| 9 | Note:
|
|---|
| 10 | Currenly it only plots 'spectra' not Tsys or
|
|---|
| 11 | other variables.
|
|---|
| 12 | """
|
|---|
| 13 | def __init__(self):
|
|---|
| 14 | self._plotter = ASAPlot()
|
|---|
| 15 |
|
|---|
| 16 | self._tdict = {'Time':'t','time':'t','t':'t','T':'t'}
|
|---|
| 17 | self._bdict = {'Beam':'b','beam':'b','b':'b','B':'b'}
|
|---|
| 18 | self._idict = {'IF':'i','if':'i','i':'i','I':'i'}
|
|---|
| 19 | self._pdict = {'Pol':'p','pol':'p','p':'p'}
|
|---|
| 20 | self._sdict = {'scan':'s','Scan':'s','s':'s','S':'s'}
|
|---|
| 21 | self._cdict = {'t':'len(self._cursor["t"])',
|
|---|
| 22 | 'b':'len(self._cursor["b"])',
|
|---|
| 23 | 'i':'len(self._cursor["i"])',
|
|---|
| 24 | 'p':'len(self._cursor["p"])',
|
|---|
| 25 | 's':'len(scans)'}
|
|---|
| 26 | self._ldict = {'b':'Beam',
|
|---|
| 27 | 'i':'IF',
|
|---|
| 28 | 'p':'Pol',
|
|---|
| 29 | 's':'Scan'}
|
|---|
| 30 | self._dicts = [self._tdict,self._bdict,
|
|---|
| 31 | self._idict,self._pdict,
|
|---|
| 32 | self._sdict]
|
|---|
| 33 | self._panelling = None
|
|---|
| 34 | self._stacking = None
|
|---|
| 35 | self.set_panelling()
|
|---|
| 36 | self.set_stacking()
|
|---|
| 37 | self._rows = None
|
|---|
| 38 | self._cols = None
|
|---|
| 39 | self._autoplot = False
|
|---|
| 40 | self._minmaxx = None
|
|---|
| 41 | self._minmaxy = None
|
|---|
| 42 | self._data = None
|
|---|
| 43 | self._lmap = None
|
|---|
| 44 | self._title = None
|
|---|
| 45 | self._ordinate = None
|
|---|
| 46 | self._abcissa = None
|
|---|
| 47 | self._abcunit = None
|
|---|
| 48 | self._cursor = {'t':None, 'b':None,
|
|---|
| 49 | 'i':None, 'p':None
|
|---|
| 50 | }
|
|---|
| 51 |
|
|---|
| 52 | def _translate(self, name):
|
|---|
| 53 | for d in self._dicts:
|
|---|
| 54 | if d.has_key(name):
|
|---|
| 55 | return d[name]
|
|---|
| 56 | return None
|
|---|
| 57 |
|
|---|
| 58 | def plot(self, *args):
|
|---|
| 59 | """
|
|---|
| 60 | Plot a (list of) scantables.
|
|---|
| 61 | Parameters:
|
|---|
| 62 | one or more comma separated scantables
|
|---|
| 63 | Note:
|
|---|
| 64 | If a (list) of scantables was specified in a previous call
|
|---|
| 65 | to plot, no argument has to be given to 'replot'
|
|---|
| 66 | NO checking is done that the abcissas of the scantables
|
|---|
| 67 | are consistent e.g. all 'channel' or all 'velocity' etc.
|
|---|
| 68 | """
|
|---|
| 69 | if self._plotter.is_dead:
|
|---|
| 70 | self._plotter = ASAPlot()
|
|---|
| 71 | self._plotter.hold()
|
|---|
| 72 | self._plotter.clear()
|
|---|
| 73 | if len(args) > 0:
|
|---|
| 74 | if self._data is not None:
|
|---|
| 75 | if list(args) != self._data:
|
|---|
| 76 | self._data = list(args)
|
|---|
| 77 | # reset cursor
|
|---|
| 78 | self.set_cursor(refresh=False)
|
|---|
| 79 | else:
|
|---|
| 80 | self._data = list(args)
|
|---|
| 81 | self.set_cursor(refresh=False)
|
|---|
| 82 | # ranges become invalid when unit changes
|
|---|
| 83 | if self._abcunit != self._data[0].get_unit():
|
|---|
| 84 | self._minmaxx = None
|
|---|
| 85 | self._minmaxy = None
|
|---|
| 86 | self._abcunit = self._data[0].get_unit()
|
|---|
| 87 | if self._panelling == 't':
|
|---|
| 88 | maxrows = 25
|
|---|
| 89 | if self._data[0].nrow() > maxrows:
|
|---|
| 90 | if self._cursor["t"] is None or \
|
|---|
| 91 | (isinstance(self._cursor["t"],list) and \
|
|---|
| 92 | len(self._cursor["t"]) > maxrows ):
|
|---|
| 93 | print "Scan to be plotted contains more than %d rows.\n" \
|
|---|
| 94 | "Selecting first %d rows..." % (maxrows,maxrows)
|
|---|
| 95 | self._cursor["t"] = range(maxrows)
|
|---|
| 96 | self._plot_time(self._data[0], self._stacking)
|
|---|
| 97 | elif self._panelling == 's':
|
|---|
| 98 | self._plot_scans(self._data, self._stacking)
|
|---|
| 99 | else:
|
|---|
| 100 | self._plot_other(self._data, self._stacking)
|
|---|
| 101 | if self._minmaxy is not None:
|
|---|
| 102 | self._plotter.set_limits(ylim=self._minmaxy)
|
|---|
| 103 | self._plotter.release()
|
|---|
| 104 | return
|
|---|
| 105 |
|
|---|
| 106 | def _plot_time(self, scan, colmode):
|
|---|
| 107 | if colmode == 't':
|
|---|
| 108 | return
|
|---|
| 109 | n = len(self._cursor["t"])
|
|---|
| 110 | cdict = {'b':'scan.setbeam(j)',
|
|---|
| 111 | 'i':'scan.setif(j)',
|
|---|
| 112 | 'p':'scan.setpol(j)'}
|
|---|
| 113 | cdict2 = {'b':'self._cursor["b"]',
|
|---|
| 114 | 'i':'self._cursor["i"]',
|
|---|
| 115 | 'p':'self._cursor["p"]'}
|
|---|
| 116 | ncol = 1
|
|---|
| 117 | if self._stacking is not None:
|
|---|
| 118 | ncol = eval(self._cdict.get(colmode))
|
|---|
| 119 | if n > 1:
|
|---|
| 120 | if self._rows and self._cols:
|
|---|
| 121 | n = min(n,self._rows*self._cols)
|
|---|
| 122 | self._plotter.set_panels(rows=self._rows,cols=self._cols,
|
|---|
| 123 | nplots=n)
|
|---|
| 124 | else:
|
|---|
| 125 | self._plotter.set_panels(rows=n,cols=0,nplots=n)
|
|---|
| 126 | else:
|
|---|
| 127 | self._plotter.set_panels()
|
|---|
| 128 | rows = self._cursor["t"]
|
|---|
| 129 | self._plotter.palette(0)
|
|---|
| 130 | for rowsel in rows:
|
|---|
| 131 | i = self._cursor["t"].index(rowsel)
|
|---|
| 132 | if n > 1:
|
|---|
| 133 | self._plotter.palette(0)
|
|---|
| 134 | self._plotter.subplot(i)
|
|---|
| 135 | colvals = eval(cdict2.get(colmode))
|
|---|
| 136 | for j in colvals:
|
|---|
| 137 | polmode = "raw"
|
|---|
| 138 | jj = colvals.index(j)
|
|---|
| 139 | savej = j
|
|---|
| 140 | for k in cdict.keys():
|
|---|
| 141 | sel = eval(cdict2.get(k))
|
|---|
| 142 | j = sel[0]
|
|---|
| 143 | if k == "p":
|
|---|
| 144 | which = self._cursor["p"].index(j)
|
|---|
| 145 | polmode = self._polmode[which]
|
|---|
| 146 | j = which
|
|---|
| 147 | eval(cdict.get(k))
|
|---|
| 148 | j = savej
|
|---|
| 149 | if colmode == "p":
|
|---|
| 150 | polmode = self._polmode[self._cursor["p"].index(j)]
|
|---|
| 151 | #j = jj
|
|---|
| 152 | eval(cdict.get(colmode))
|
|---|
| 153 | x = None
|
|---|
| 154 | y = None
|
|---|
| 155 | m = None
|
|---|
| 156 | if self._title is None:
|
|---|
| 157 | tlab = scan._getsourcename(rowsel)
|
|---|
| 158 | else:
|
|---|
| 159 | if len(self._title) >= n:
|
|---|
| 160 | tlab = self._title[rowsel]
|
|---|
| 161 | else:
|
|---|
| 162 | tlab = scan._getsourcename(rowsel)
|
|---|
| 163 | x,xlab = scan.get_abcissa(rowsel)
|
|---|
| 164 | if self._abcissa: xlab = self._abcissa
|
|---|
| 165 | y = None
|
|---|
| 166 | if polmode == "stokes":
|
|---|
| 167 | y = scan._getstokesspectrum(rowsel)
|
|---|
| 168 | elif polmode == "stokes2":
|
|---|
| 169 | y = scan._getstokesspectrum(rowsel,True)
|
|---|
| 170 | elif polmode == "circular":
|
|---|
| 171 | y = scan._stokestopolspectrum(rowsel,False,-1)
|
|---|
| 172 | else:
|
|---|
| 173 | y = scan._getspectrum(rowsel)
|
|---|
| 174 | if self._ordinate:
|
|---|
| 175 | ylab = self._ordinate
|
|---|
| 176 | else:
|
|---|
| 177 | ylab = scan._get_ordinate_label()
|
|---|
| 178 | m = scan._getmask(rowsel)
|
|---|
| 179 | if self._lmap and len(self._lmap) > 0:
|
|---|
| 180 | llab = self._lmap[jj]
|
|---|
| 181 | else:
|
|---|
| 182 | if colmode == 'p':
|
|---|
| 183 | llab = self._get_pollabel(scan, polmode)
|
|---|
| 184 | else:
|
|---|
| 185 | llab = self._ldict.get(colmode)+' '+str(j)
|
|---|
| 186 | self._plotter.set_line(label=llab)
|
|---|
| 187 | if self._minmaxx is not None:
|
|---|
| 188 | s,e = self._slice_indeces(x)
|
|---|
| 189 | x = x[s:e]
|
|---|
| 190 | y = y[s:e]
|
|---|
| 191 | m = m[s:e]
|
|---|
| 192 | self._plotter.plot(x,y,m)
|
|---|
| 193 |
|
|---|
| 194 | xlim=[min(x),max(x)]
|
|---|
| 195 | self._plotter.axes.set_xlim(xlim)
|
|---|
| 196 | self._plotter.set_axes('xlabel',xlab)
|
|---|
| 197 | self._plotter.set_axes('ylabel',ylab)
|
|---|
| 198 | self._plotter.set_axes('title',tlab)
|
|---|
| 199 | return
|
|---|
| 200 |
|
|---|
| 201 | def _plot_scans(self, scans, colmode):
|
|---|
| 202 | print "Can only plot one row per scan."
|
|---|
| 203 | if colmode == 's':
|
|---|
| 204 | return
|
|---|
| 205 | cdict = {'b':'scan.setbeam(j)',
|
|---|
| 206 | 'i':'scan.setif(j)',
|
|---|
| 207 | 'p':'scan.setpol(j)'}
|
|---|
| 208 | cdict2 = {'b':'self._cursor["b"]',
|
|---|
| 209 | 'i':'self._cursor["i"]',
|
|---|
| 210 | 'p':'self._cursor["p"]'}
|
|---|
| 211 |
|
|---|
| 212 | n = len(scans)
|
|---|
| 213 | ncol = 1
|
|---|
| 214 | if self._stacking is not None:
|
|---|
| 215 | scan = scans[0]
|
|---|
| 216 | ncol = eval(self._cdict.get(colmode))
|
|---|
| 217 | if n > 1:
|
|---|
| 218 | if self._rows and self._cols:
|
|---|
| 219 | n = min(n,self._rows*self._cols)
|
|---|
| 220 | self._plotter.set_panels(rows=self._rows,cols=self._cols,
|
|---|
| 221 | nplots=n)
|
|---|
| 222 | else:
|
|---|
| 223 | self._plotter.set_panels(rows=n,cols=0,nplots=n)
|
|---|
| 224 | else:
|
|---|
| 225 | self._plotter.set_panels()
|
|---|
| 226 |
|
|---|
| 227 | for scan in scans:
|
|---|
| 228 | self._plotter.palette(0)
|
|---|
| 229 | if n > 1:
|
|---|
| 230 | self._plotter.subplot(scans.index(scan))
|
|---|
| 231 | colvals = eval(cdict2.get(colmode))
|
|---|
| 232 | rowsel = self._cursor["t"][0]
|
|---|
| 233 | for j in colvals:
|
|---|
| 234 | polmode = "raw"
|
|---|
| 235 | jj = colvals.index(j)
|
|---|
| 236 | savej = j
|
|---|
| 237 | for k in cdict.keys():
|
|---|
| 238 | sel = eval(cdict2.get(k))
|
|---|
| 239 | j = sel[0]
|
|---|
| 240 | eval(cdict.get(k))
|
|---|
| 241 | if k == "p":
|
|---|
| 242 | which = self._cursor["p"].index(j)
|
|---|
| 243 | polmode = self._polmode[which]
|
|---|
| 244 | j = which
|
|---|
| 245 | j = savej
|
|---|
| 246 | if colmode == "p":
|
|---|
| 247 | polmode = self._polmode[self._cursor["p"].index(j)]
|
|---|
| 248 | #j = jj
|
|---|
| 249 | eval(cdict.get(colmode))
|
|---|
| 250 | x = None
|
|---|
| 251 | y = None
|
|---|
| 252 | m = None
|
|---|
| 253 | tlab = self._title
|
|---|
| 254 | if not self._title:
|
|---|
| 255 | tlab = scan._getsourcename(rowsel)
|
|---|
| 256 | x,xlab = scan.get_abcissa(rowsel)
|
|---|
| 257 | if self._abcissa: xlab = self._abcissa
|
|---|
| 258 | if polmode == "stokes":
|
|---|
| 259 | y = scan._getstokesspectrum(rowsel)
|
|---|
| 260 | elif polmode == "stokes2":
|
|---|
| 261 | y = scan._getstokesspectrum(rowsel,True)
|
|---|
| 262 | elif polmode == "circular":
|
|---|
| 263 | y = scan._stokestopolspectrum(rowsel,False,-1)
|
|---|
| 264 | else:
|
|---|
| 265 | y = scan._getspectrum(rowsel)
|
|---|
| 266 | if self._ordinate:
|
|---|
| 267 | ylab = self._ordinate
|
|---|
| 268 | else:
|
|---|
| 269 | ylab = scan._get_ordinate_label()
|
|---|
| 270 | m = scan._getmask(rowsel)
|
|---|
| 271 | if self._lmap and len(self._lmap) > 0:
|
|---|
| 272 | llab = self._lmap[jj]
|
|---|
| 273 | else:
|
|---|
| 274 | if colmode == 'p':
|
|---|
| 275 | llab = self._get_pollabel(scan, polmode)
|
|---|
| 276 | else:
|
|---|
| 277 | llab = self._ldict.get(colmode)+' '+str(j)
|
|---|
| 278 | self._plotter.set_line(label=llab)
|
|---|
| 279 | if self._minmaxx is not None:
|
|---|
| 280 | s,e = self._slice_indeces(x)
|
|---|
| 281 | x = x[s:e]
|
|---|
| 282 | y = y[s:e]
|
|---|
| 283 | m = m[s:e]
|
|---|
| 284 |
|
|---|
| 285 | self._plotter.plot(x,y,m)
|
|---|
| 286 | xlim=[min(x),max(x)]
|
|---|
| 287 | self._plotter.axes.set_xlim(xlim)
|
|---|
| 288 |
|
|---|
| 289 | self._plotter.set_axes('xlabel',xlab)
|
|---|
| 290 | self._plotter.set_axes('ylabel',ylab)
|
|---|
| 291 | self._plotter.set_axes('title',tlab)
|
|---|
| 292 | return
|
|---|
| 293 |
|
|---|
| 294 | def _plot_other(self,scans,colmode):
|
|---|
| 295 | if colmode == self._panelling:
|
|---|
| 296 | return
|
|---|
| 297 | cdict = {'b':'scan.setbeam(i)',
|
|---|
| 298 | 'i':'scan.setif(i)',
|
|---|
| 299 | 'p':'scan.setpol(i)'}
|
|---|
| 300 | cdict2 = {'b':'self._cursor["b"]',
|
|---|
| 301 | 'i':'self._cursor["i"]',
|
|---|
| 302 | 'p':'self._cursor["p"]',
|
|---|
| 303 | 's': 'scans',
|
|---|
| 304 | 't': 'self._cursor["t"]'}
|
|---|
| 305 | scan = scans[0]
|
|---|
| 306 | n = eval(self._cdict.get(self._panelling))
|
|---|
| 307 | ncol=1
|
|---|
| 308 | if self._stacking is not None:
|
|---|
| 309 | ncol = eval(self._cdict.get(colmode))
|
|---|
| 310 | if n > 1:
|
|---|
| 311 | if self._rows and self._cols:
|
|---|
| 312 | n = min(n,self._rows*self._cols)
|
|---|
| 313 | self._plotter.set_panels(rows=self._rows,cols=self._cols,
|
|---|
| 314 | nplots=n)
|
|---|
| 315 | else:
|
|---|
| 316 | self._plotter.set_panels(rows=n,cols=0,nplots=n)
|
|---|
| 317 | else:
|
|---|
| 318 | self._plotter.set_panels()
|
|---|
| 319 | panels = self._cursor[self._panelling]
|
|---|
| 320 | for i in panels:
|
|---|
| 321 | self._plotter.palette(0)
|
|---|
| 322 | polmode = "raw"
|
|---|
| 323 | ii = self._cursor[self._panelling].index(i)
|
|---|
| 324 | if n>1:
|
|---|
| 325 | self._plotter.subplot(ii)
|
|---|
| 326 | if self._panelling == "p":
|
|---|
| 327 | polmode = self._polmode[ii]
|
|---|
| 328 | eval(cdict.get(self._panelling))
|
|---|
| 329 | else:
|
|---|
| 330 | eval(cdict.get(self._panelling))
|
|---|
| 331 | colvals = eval(cdict2.get(colmode))
|
|---|
| 332 | for j in colvals:
|
|---|
| 333 | rowsel = self._cursor["t"][0]
|
|---|
| 334 | jj = colvals.index(j)
|
|---|
| 335 | savei = i
|
|---|
| 336 | for k in cdict.keys():
|
|---|
| 337 | if k != self._panelling:
|
|---|
| 338 | sel = eval(cdict2.get(k))
|
|---|
| 339 | i = sel[0]
|
|---|
| 340 | if k == "p":
|
|---|
| 341 | which = self._cursor["p"].index(i)
|
|---|
| 342 | polmode = self._polmode[which]
|
|---|
| 343 | i = which
|
|---|
| 344 | eval(cdict.get(k))
|
|---|
| 345 | i = savei
|
|---|
| 346 | if colmode == 's':
|
|---|
| 347 | scan = j
|
|---|
| 348 | elif colmode == 't':
|
|---|
| 349 | rowsel = j
|
|---|
| 350 | else:
|
|---|
| 351 | savei = i
|
|---|
| 352 | if colmode == 'p':
|
|---|
| 353 | polmode = self._polmode[self._cursor["p"].index(j)]
|
|---|
| 354 | i = j
|
|---|
| 355 | eval(cdict.get(colmode))
|
|---|
| 356 | i = savei
|
|---|
| 357 | x = None
|
|---|
| 358 | y = None
|
|---|
| 359 | m = None
|
|---|
| 360 | x,xlab = scan.get_abcissa(rowsel)
|
|---|
| 361 | if self._abcissa: xlab = self._abcissa
|
|---|
| 362 | if polmode == "stokes":
|
|---|
| 363 | y = scan._getstokesspectrum(rowsel)
|
|---|
| 364 | elif polmode == "stokes2":
|
|---|
| 365 | y = scan._getstokesspectrum(rowsel,True)
|
|---|
| 366 | elif polmode == "circular":
|
|---|
| 367 | y = scan._stokestopolspectrum(rowsel,False,-1)
|
|---|
| 368 | else:
|
|---|
| 369 | y = scan._getspectrum(rowsel)
|
|---|
| 370 |
|
|---|
| 371 | if self._ordinate:
|
|---|
| 372 | ylab = self._ordinate
|
|---|
| 373 | else:
|
|---|
| 374 | ylab = scan._get_ordinate_label()
|
|---|
| 375 | m = scan._getmask(rowsel)
|
|---|
| 376 | if colmode == 's' or colmode == 't':
|
|---|
| 377 | if self._title and len(self._title) > 0:
|
|---|
| 378 | tlab = self._title[ii]
|
|---|
| 379 | else:
|
|---|
| 380 | if self._panelling == 'p':
|
|---|
| 381 | tlab = self._get_pollabel(scan, polmode)
|
|---|
| 382 | else:
|
|---|
| 383 | tlab = self._ldict.get(self._panelling)+' '+str(i)
|
|---|
| 384 | if self._lmap and len(self._lmap) > 0:
|
|---|
| 385 | llab = self._lmap[jj]
|
|---|
| 386 | else:
|
|---|
| 387 | llab = scan._getsourcename(rowsel)
|
|---|
| 388 | else:
|
|---|
| 389 | if self._title and len(self._title) > 0:
|
|---|
| 390 | tlab = self._title[ii]
|
|---|
| 391 | else:
|
|---|
| 392 | if self._panelling == 'p':
|
|---|
| 393 | tlab = self._get_pollabel(scan, polmode)
|
|---|
| 394 | else:
|
|---|
| 395 | tlab = self._ldict.get(self._panelling)+' '+str(i)
|
|---|
| 396 | if self._lmap and len(self._lmap) > 0:
|
|---|
| 397 | llab = self._lmap[jj]
|
|---|
| 398 | else:
|
|---|
| 399 | if colmode == 'p':
|
|---|
| 400 | llab = self._get_pollabel(scan, polmode)
|
|---|
| 401 | else:
|
|---|
| 402 | llab = self._ldict.get(colmode)+' '+str(j)
|
|---|
| 403 | self._plotter.set_line(label=llab)
|
|---|
| 404 | if self._minmaxx is not None:
|
|---|
| 405 | s,e = self._slice_indeces(x)
|
|---|
| 406 | x = x[s:e]
|
|---|
| 407 | y = y[s:e]
|
|---|
| 408 | m = m[s:e]
|
|---|
| 409 |
|
|---|
| 410 | self._plotter.plot(x,y,m)
|
|---|
| 411 | xlim=[min(x),max(x)]
|
|---|
| 412 | self._plotter.axes.set_xlim(xlim)
|
|---|
| 413 |
|
|---|
| 414 | self._plotter.set_axes('xlabel',xlab)
|
|---|
| 415 | self._plotter.set_axes('ylabel',ylab)
|
|---|
| 416 | self._plotter.set_axes('title',tlab)
|
|---|
| 417 |
|
|---|
| 418 | return
|
|---|
| 419 |
|
|---|
| 420 |
|
|---|
| 421 | def set_mode(self, stacking=None, panelling=None):
|
|---|
| 422 | """
|
|---|
| 423 | Set the plots look and feel, i.e. what you want to see on the plot.
|
|---|
| 424 | Parameters:
|
|---|
| 425 | stacking: tell the plotter which variable to plot
|
|---|
| 426 | as line colour overlays (default 'pol')
|
|---|
| 427 | panelling: tell the plotter which variable to plot
|
|---|
| 428 | across multiple panels (default 'scan'
|
|---|
| 429 | Note:
|
|---|
| 430 | Valid modes are:
|
|---|
| 431 | 'beam' 'Beam' 'b': Beams
|
|---|
| 432 | 'if' 'IF' 'i': IFs
|
|---|
| 433 | 'pol' 'Pol' 'p': Polarisations
|
|---|
| 434 | 'scan' 'Scan' 's': Scans
|
|---|
| 435 | 'time' 'Time' 't': Times
|
|---|
| 436 | """
|
|---|
| 437 | if not self.set_panelling(panelling):
|
|---|
| 438 | print "Invalid mode"
|
|---|
| 439 | return
|
|---|
| 440 | if not self.set_stacking(stacking):
|
|---|
| 441 | print "Invalid mode"
|
|---|
| 442 | return
|
|---|
| 443 | if self._data: self.plot()
|
|---|
| 444 | return
|
|---|
| 445 |
|
|---|
| 446 | def set_panelling(self, what=None):
|
|---|
| 447 | mode = what
|
|---|
| 448 | if mode is None:
|
|---|
| 449 | mode = rcParams['plotter.panelling']
|
|---|
| 450 | md = self._translate(mode)
|
|---|
| 451 | if md:
|
|---|
| 452 | self._panelling = md
|
|---|
| 453 | self._title = None
|
|---|
| 454 | return True
|
|---|
| 455 | return False
|
|---|
| 456 |
|
|---|
| 457 | def set_layout(self,rows=None,cols=None):
|
|---|
| 458 | """
|
|---|
| 459 | Set the multi-panel layout, i.e. how many rows and columns plots
|
|---|
| 460 | are visible.
|
|---|
| 461 | Parameters:
|
|---|
| 462 | rows: The number of rows of plots
|
|---|
| 463 | cols: The number of columns of plots
|
|---|
| 464 | Note:
|
|---|
| 465 | If no argument is given, the potter reverts to its auto-plot
|
|---|
| 466 | behaviour.
|
|---|
| 467 | """
|
|---|
| 468 | self._rows = rows
|
|---|
| 469 | self._cols = cols
|
|---|
| 470 | if self._data: self.plot()
|
|---|
| 471 | return
|
|---|
| 472 |
|
|---|
| 473 | def set_stacking(self, what=None):
|
|---|
| 474 | mode = what
|
|---|
| 475 | if mode is None:
|
|---|
| 476 | mode = rcParams['plotter.stacking']
|
|---|
| 477 | md = self._translate(mode)
|
|---|
| 478 | if md:
|
|---|
| 479 | self._stacking = md
|
|---|
| 480 | self._lmap = None
|
|---|
| 481 | return True
|
|---|
| 482 | return False
|
|---|
| 483 |
|
|---|
| 484 | def set_range(self,xstart=None,xend=None,ystart=None,yend=None):
|
|---|
| 485 | """
|
|---|
| 486 | Set the range of interest on the abcissa of the plot
|
|---|
| 487 | Parameters:
|
|---|
| 488 | [x,y]start,[x,y]end: The start and end points of the 'zoom' window
|
|---|
| 489 | Note:
|
|---|
| 490 | These become non-sensical when the unit changes.
|
|---|
| 491 | use plotter.set_range() without parameters to reset
|
|---|
| 492 |
|
|---|
| 493 | """
|
|---|
| 494 | if xstart is None and xend is None:
|
|---|
| 495 | self._minmaxx = None
|
|---|
| 496 | else:
|
|---|
| 497 | self._minmaxx = [xstart,xend]
|
|---|
| 498 | if ystart is None and yend is None:
|
|---|
| 499 | self._minmaxy = None
|
|---|
| 500 | else:
|
|---|
| 501 | self._minmaxy = [ystart,yend]
|
|---|
| 502 | if self._data: self.plot()
|
|---|
| 503 | return
|
|---|
| 504 |
|
|---|
| 505 | def set_legend(self, mp=None):
|
|---|
| 506 | """
|
|---|
| 507 | Specify a mapping for the legend instead of using the default
|
|---|
| 508 | indices:
|
|---|
| 509 | Parameters:
|
|---|
| 510 | mp: a list of 'strings'. This should have the same length
|
|---|
| 511 | as the number of elements on the legend and then maps
|
|---|
| 512 | to the indeces in order
|
|---|
| 513 |
|
|---|
| 514 | Example:
|
|---|
| 515 | If the data has two IFs/rest frequencies with index 0 and 1
|
|---|
| 516 | for CO and SiO:
|
|---|
| 517 | plotter.set_stacking('i')
|
|---|
| 518 | plotter.set_legend_map(['CO','SiO'])
|
|---|
| 519 | plotter.plot()
|
|---|
| 520 | """
|
|---|
| 521 | self._lmap = mp
|
|---|
| 522 | if self._data: self.plot()
|
|---|
| 523 | return
|
|---|
| 524 |
|
|---|
| 525 | def set_title(self, title=None):
|
|---|
| 526 | self._title = title
|
|---|
| 527 | if self._data: self.plot()
|
|---|
| 528 | return
|
|---|
| 529 |
|
|---|
| 530 | def set_ordinate(self, ordinate=None):
|
|---|
| 531 | self._ordinate = ordinate
|
|---|
| 532 | if self._data: self.plot()
|
|---|
| 533 | return
|
|---|
| 534 |
|
|---|
| 535 | def set_abcissa(self, abcissa=None):
|
|---|
| 536 | self._abcissa = abcissa
|
|---|
| 537 | if self._data: self.plot()
|
|---|
| 538 | return
|
|---|
| 539 |
|
|---|
| 540 | def save(self, filename=None, orientation=None):
|
|---|
| 541 | """
|
|---|
| 542 | Save the plot to a file. The know formats are 'png', 'ps', 'eps'.
|
|---|
| 543 | Parameters:
|
|---|
| 544 | filename: The name of the output file. This is optional
|
|---|
| 545 | and autodetects the image format from the file
|
|---|
| 546 | suffix. If non filename is specified a file
|
|---|
| 547 | called 'yyyymmdd_hhmmss.png' is created in the
|
|---|
| 548 | current directory.
|
|---|
| 549 | orientation: optional parameter for postscript only (not eps).
|
|---|
| 550 | 'landscape', 'portrait' or None (default) are valid.
|
|---|
| 551 | If None is choosen for 'ps' output, the plot is
|
|---|
| 552 | automatically oriented to fill the page.
|
|---|
| 553 | """
|
|---|
| 554 | self._plotter.save(filename,orientation)
|
|---|
| 555 | return
|
|---|
| 556 |
|
|---|
| 557 | def set_cursor(self, row=None,beam=None,IF=None,pol=None, refresh=True):
|
|---|
| 558 | """
|
|---|
| 559 | Specify a 'cursor' for plotting selected spectra. Time (rows),
|
|---|
| 560 | Beam, IF, Polarisation ranges can be specified.
|
|---|
| 561 | Parameters:
|
|---|
| 562 | Default for all paramaters is to select all available
|
|---|
| 563 | row: selects the rows (time stamps) to be plotted, this has
|
|---|
| 564 | to be a vector of row indices, e.g. row=[0,2,5] or row=[2]
|
|---|
| 565 | beam: select a range of beams
|
|---|
| 566 | IF: select a range of IFs
|
|---|
| 567 | pol: select Polarisations for plotting these can be by index
|
|---|
| 568 | (raw polarisations (default)) or by names any of:
|
|---|
| 569 | ["I", "Q", "U", "V"] or
|
|---|
| 570 | ["I", "Plinear", "Pangle", "V"] or
|
|---|
| 571 | ["XX", "YY", "Real(XY)", "Imag(XY)"] or
|
|---|
| 572 | ["RR", "LL"]
|
|---|
| 573 | Example:
|
|---|
| 574 | plotter.set_mode('pol','time')
|
|---|
| 575 | plotter.plot(myscan) # plots all raw polarisations colour stacked
|
|---|
| 576 | plotter.set_cursor(pol=["I"]) # plot "I" only for all rows
|
|---|
| 577 | # plot "I" only for two time stamps row=0 and row=2
|
|---|
| 578 | plotter.set_cursor(row=[0,2],pol=["I"])
|
|---|
| 579 |
|
|---|
| 580 | Note:
|
|---|
| 581 | Be careful to select only exisiting polarisations.
|
|---|
| 582 | """
|
|---|
| 583 | if not self._data:
|
|---|
| 584 | print "Can only set cursor after a first call to plot()"
|
|---|
| 585 | return
|
|---|
| 586 |
|
|---|
| 587 | n = self._data[0].nrow()
|
|---|
| 588 | if row is None:
|
|---|
| 589 | self._cursor["t"] = range(n)
|
|---|
| 590 | else:
|
|---|
| 591 | for i in row:
|
|---|
| 592 | if i < 0 or i >= n:
|
|---|
| 593 | print "Row index '%d' out of range" % i
|
|---|
| 594 | return
|
|---|
| 595 | self._cursor["t"] = row
|
|---|
| 596 |
|
|---|
| 597 | n = self._data[0].nbeam()
|
|---|
| 598 | if beam is None:
|
|---|
| 599 | self._cursor["b"] = range(n)
|
|---|
| 600 | else:
|
|---|
| 601 | for i in beam:
|
|---|
| 602 | if i < 0 or i >= n:
|
|---|
| 603 | print "Beam index '%d' out of range" % i
|
|---|
| 604 | return
|
|---|
| 605 | self._cursor["b"] = beam
|
|---|
| 606 |
|
|---|
| 607 | n = self._data[0].nif()
|
|---|
| 608 | if IF is None:
|
|---|
| 609 | self._cursor["i"] = range(n)
|
|---|
| 610 | else:
|
|---|
| 611 | for i in IF:
|
|---|
| 612 | if i < 0 or i >= n:
|
|---|
| 613 | print "IF index '%d' out of range" %i
|
|---|
| 614 | return
|
|---|
| 615 | self._cursor["i"] = IF
|
|---|
| 616 |
|
|---|
| 617 | n = self._data[0].npol()
|
|---|
| 618 | dstokes = {"I":0,"Q":1,"U":2,"V":3}
|
|---|
| 619 | dstokes2 = {"I":0,"Plinear":1,"Pangle":2,"V":3}
|
|---|
| 620 | draw = {"XX":0, "YY":1,"Real(XY)":2, "Imag(XY)":3}
|
|---|
| 621 | dcirc = { "RR":0,"LL":1}#,"Real(RL)":2,"Image(RL)":3}
|
|---|
| 622 |
|
|---|
| 623 | if pol is None:
|
|---|
| 624 | self._cursor["p"] = range(n)
|
|---|
| 625 | self._polmode = ["raw" for i in range(n)]
|
|---|
| 626 | else:
|
|---|
| 627 | if isinstance(pol,str):
|
|---|
| 628 | pol = pol.split()
|
|---|
| 629 | polmode = []
|
|---|
| 630 | pols = []
|
|---|
| 631 | for i in pol:
|
|---|
| 632 | if isinstance(i,str):
|
|---|
| 633 | if draw.has_key(i):
|
|---|
| 634 | pols.append(draw.get(i))
|
|---|
| 635 | polmode.append("raw")
|
|---|
| 636 | elif dstokes.has_key(i):
|
|---|
| 637 | pols.append(dstokes.get(i))
|
|---|
| 638 | polmode.append("stokes")
|
|---|
| 639 | elif dstokes2.has_key(i):
|
|---|
| 640 | pols.append(dstokes2.get(i))
|
|---|
| 641 | polmode.append("stokes2")
|
|---|
| 642 | elif dcirc.has_key(i):
|
|---|
| 643 | pols.append(dcirc.get(i))
|
|---|
| 644 | polmode.append("circular")
|
|---|
| 645 | else:
|
|---|
| 646 | print "Pol type '%s' not valid" %i
|
|---|
| 647 | return
|
|---|
| 648 | elif 0 > i >= n:
|
|---|
| 649 | print "Pol index '%d' out of range" %i
|
|---|
| 650 | return
|
|---|
| 651 | else:
|
|---|
| 652 | pols.append(i)
|
|---|
| 653 | polmode.append("raw")
|
|---|
| 654 | self._cursor["p"] = pols
|
|---|
| 655 | self._polmode = polmode
|
|---|
| 656 | if self._data and refresh: self.plot()
|
|---|
| 657 |
|
|---|
| 658 | def _get_pollabel(self, scan, polmode):
|
|---|
| 659 | tlab = ""
|
|---|
| 660 | if polmode == "stokes":
|
|---|
| 661 | tlab = scan._getpolarizationlabel(0,1,0)
|
|---|
| 662 | elif polmode == "stokes2":
|
|---|
| 663 | tlab = scan._getpolarizationlabel(0,1,1)
|
|---|
| 664 | elif polmode == "circular":
|
|---|
| 665 | tlab = scan._getpolarizationlabel(0,0,0)
|
|---|
| 666 | else:
|
|---|
| 667 | tlab = scan._getpolarizationlabel(1,0,0)
|
|---|
| 668 | return tlab
|
|---|
| 669 |
|
|---|
| 670 | def _slice_indeces(self, data):
|
|---|
| 671 | mn = self._minmaxx[0]
|
|---|
| 672 | mx = self._minmaxx[1]
|
|---|
| 673 | asc = data[0] < data[-1]
|
|---|
| 674 | start=0
|
|---|
| 675 | end = len(data)-1
|
|---|
| 676 | inc = 1
|
|---|
| 677 | if not asc:
|
|---|
| 678 | start = len(data)-1
|
|---|
| 679 | end = 0
|
|---|
| 680 | inc = -1
|
|---|
| 681 | # find min index
|
|---|
| 682 | while data[start] < mn:
|
|---|
| 683 | start+= inc
|
|---|
| 684 | # find max index
|
|---|
| 685 | while data[end] > mx:
|
|---|
| 686 | end-=inc
|
|---|
| 687 | end +=1
|
|---|
| 688 | if start > end:
|
|---|
| 689 | return end,start
|
|---|
| 690 | return start,end
|
|---|
| 691 |
|
|---|
| 692 | if __name__ == '__main__':
|
|---|
| 693 | plotter = asapplotter()
|
|---|