

FPDP Digital I/O Board

Installation and User’s Guide

Copyright and Trademarks

The information in this document is subject to change without notice.

This document contains proprietary information that is protected by copyright. All
rights are reserved. No part of this document may be photocopied, reproduced, or
translated to another language without the prior written consent of Conduant
Corporation.

Printed in the United States.

© 2007 Conduant Corporation. All rights reserved.

StreamStor is a trademark of Conduant Corporation.

All other trademarks are the property of their respective owners.

Version: 8.7

Publication date: July 5, 2007

2

Table of Contents

Copyright and Trademarks .. 2

License Agreement and Limited Warranty .. 7

About This Manual.. 9

Introduction.. 11
About the FPDP Digital I/O Board .. 12
What you need to get started .. 12
Software Programming Choices... 12
Unpacking .. 13

FPDP Digital I/O Board ..13
Installation.. 15

Components.. 16
Planning Your Installation ... 16
Hardware Installation ... 16

FPDP Digital I/O Board ..16
Installing the Software ... 17

Software Development Kit (SDK) .. 19
Introduction .. 20
Software Components .. 20

Device Driver ...20
Support files..20
Windows Uninstall..21
Windows Library ..21
Linux Uninstall ...21
Linux Configuration/Test Utilities ..22
Linux Library..23
API Functions ...23
Data Structures...25

Function Reference.. 27
XLRApiVersion ...28
XLRArmFPDP..29
XLRBindInputChannel..30
XLRBindOutputChannel ...32
XLRCardReset ..34
XLRClearChannels ...35
XLRClose..36
XLRDeviceFind ..37
XLRGetBaseAddr..38
XLRGetBaseRange ...39
XLRGetDeviceInfo..40
XLRGetDeviceStatus...41

3

XLRGetErrorMessage ..42
XLRGetFIFOLength ...43
XLRGetLastError ...44
XLRGetMode ..45
XLRGetSystemAddr ..46
XLRGetVersion...47
XLRGetWindowAddr ..48
XLROpen ..49
XLRReadFifo ..50
XLRRecord ...52
XLRReset ..53
XLRSelectChannel ..54
XLRSetFPDPMode...55
XLRSetMode ...57
XLRSetPortClock..58
XLRSetReadLimit..59
XLRStop..60
Structure S_DEVINFO ...61
Structure S_DEVSTATUS...62
Structure S_READDESC ..64
Structure S_XLRSWREV...65

PCI Integration .. 67
PCI Integration ... 68

Initialization and Setup...68
PCI Bus Interfacing ..68
Multi-Card Operation...69

Operation.. 71
Operation.. 72

Data Transfer ...72
Transferring Data into the FIFO..73
Ending the Transfer ...73

Reading Data from the FIFO..73
Checking the FIFO length ..74
Ending a FIFO Operation ..74
Overflows..74

External Port.. 75
External Port... 76
FPDP .. 76

Overview...76
Interface Electronics...77
Data Formats..77
PIO Signals...77
Interface Functions...77
PSTROBE/PSTROBE* and STROB Signals ...79
Operating Frequency Range...79

Channel Description and Selection .. 81
Channel Description and Selection .. 82

Channel Description...82
Selecting an Operating Mode ...82
Binding and Selecting Channels ...82

4

Example 1 ...83
Example 2 ...87

Technical Support.. 89
Technical Support .. 90
Contacting Technical Support .. 90

Appendix A – Error Codes ... 93

5

License Agreement and Limited
Warranty

IMPORTANT. CAREFULLY READ THE TERMS AND CONDITIONS OF THIS AGREEMENT BEFORE
USING THE PRODUCT. By installing or otherwise using the StreamStor Product, you agree to be bound by
the terms of this Agreement. If you do not agree to the terms of this Agreement, do not install or use the
StreamStor Product and return it to Conduant Corporation.

GRANT OF LICENSE. In consideration for your purchase of the StreamStor Product, Conduant Corporation
hereby grants you a limited, non-exclusive, revocable license to use the software and firmware which controls
the StreamStor Product (hereinafter the "Software") solely as part of and in connection with your use of the
StreamStor Product. If you are authorized to resell the StreamStor Product, Conduant Corporation hereby
grants you a limited non-exclusive license to transfer the Software only in conjunction with a sale or transfer
by you of the StreamStor Product controlled by the Software, provided you retain no copies of the Software
and the recipient agrees to be bound by the terms of this Agreement and you comply with the RESALE
provision herein.

NO REVERSE ENGINEERING. You may not cause or permit, and must take all appropriate and reasonable
steps necessary to prevent, the reverse engineering, decompilation, reverse assembly, modification,
reconfiguration or creation of derivative works of the Software, in whole or in part.

OWNERSHIP. The Software is a proprietary product of Conduant Corporation which retains all title, rights
and interest in and to the Software, including, but not limited to, all copyrights, trademarks, trade secrets,
know-how and other proprietary information included or embodied in the Software. The Software is protected
by national copyright laws and international copyright treaties.

TERM. This Agreement is effective from the date of receipt of the StreamStor Product and the Software. This
Agreement will terminate automatically at any time, without prior notice to you, if you fail to comply with any
of the provisions hereunder. Upon termination of this Agreement for any reason, you must return the
StreamStor Product and Software in your possession or control to Conduant Corporation.

LIMITED WARRANTY. This Limited Warranty is void if failure of the StreamStor Product or the Software is
due to accident, abuse or misuse.

Hardware: Conduant's terms of warranty on all manufactured products is one year from the date of shipment
from our offices. After the warranty period, product support and repairs are available on a fee paid basis.
Warranty on all third party materials sold through Conduant, such as chassis, disk drives, PCs, bus extenders,
and drive carriers, is passed through with the original manufacturer's warranty. Conduant will provide no
charge service for 90 days to replace or handle repair returns on third party materials. Any charges imposed by
the original manufacturer will be passed through to the customer. After 90 days, Conduant will handle returns
on third party material on a time and materials basis.

7

Software: The warranty on all software products is 90 days from the date of shipment from Conduant’s
offices. After 90 days, Conduant will provide product support and upgrades on a fee paid basis. Warranties on
all third party software are passed through with the original manufacturer's warranty. Conduant will provide no
charge service for 90 days to replace or handle repair returns on third party software. Any charges imposed by
the manufacturer will be passed through to the customer.

DISCLAIMER OF WARRANTIES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
CONDUANT CORPORATION DISCLAIMS ALL OTHER WARRANTIES AND CONDITIONS, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT,
WITH REGARD TO THE STREAMSTOR PRODUCT AND THE SOFTWARE.

SOLE REMEDIES. If the StreamStor Product or the Software do not meet Conduant Corporation’s Limited
Warranty and you return the StreamStor Product and the Software to Conduant Corporation, Conduant
Corporation's entire liability and your exclusive remedy shall be at Conduant Corporation 's option, either (a)
return of the price paid, if any, or (b) repair or replacement of the StreamStor Product or the Software. Any
replacement Product or Software will be warranted for the remainder of the original warranty period.

LIMITATION OF LIABILITIES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
IN NO EVENT SHALL CONDUANT CORPORATION BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF
BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF OR
INABILITY TO USE THE STREAMSTOR PRODUCT AND THE SOFTWARE. IN ANY CASE,
CONDUANT CORPORATION'S ENTIRE LIABILITY UNDER ANY PROVISION OF THIS
AGREEMENT SHALL BE LIMITED TO THE AMOUNT ACTUALLY PAID BY YOU FOR THE
STREAMSTOR PRODUCT AND THE SOFTWARE. BECAUSE SOME STATES AND JURISDICTIONS
DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY, THE ABOVE LIMITATION
MAY NOT APPLY TO YOU.

RESALE. If you are authorized to resell the StreamStor Product, you must distribute the StreamStor Product
only in conjunction with and as part of your product that is designed, developed and tested to operate with and
add significant functionality to the StreamStor Product; you may not permit further distribution or transfer of
the StreamStor Product by your end-user customer; you must agree to indemnify, hold harmless and defend
Conduant Corporation from and against any claims or lawsuits, including attorneys' fees, that arise or result
from the use or distribution of your product; and you may not use Conduant Corporation's name, logos or
trademarks to market your product without the prior written consent of Conduant Corporation.

ENTIRE AGREEMENT; SEVERABILITY. This Agreement constitutes the complete and exclusive
agreement between you and Conduant Corporation with respect to the subject matter hereof and supersedes all
prior written or oral agreements, understandings or communications. If any provision of this Agreement is
deemed invalid under any applicable law, it shall be deemed modified or omitted to the extent necessary to
comply with such law and the remainder of this Agreement shall remain in full force and effect.

GOVERNING LAW. This Agreement is governed by the laws of the State of Colorado, without giving effect
to the choice of law provisions therein. By accepting this Agreement, you hereby consent to the exclusive
jurisdiction of the state and federal courts sitting in the State of Colorado.

8

About This Manual

This manual is intended to serve the following purposes:

∗ to act as a guide for hardware installation

∗ to act as a reference for the programmer

It is suggested that you periodically check the Conduant web site for the most recent
software updates, application notes, and technical bulletins.

If you are unable to locate the information you need, contact us by phone or submit
an electronic request for support. To submit a request for support, go to our
website, www.conduant.com. Then click on the support link.

9

Chapter 1

Introduction

11

C H A P T E R 1 : I N T R O D U C T I O N

About the FPDP Digital I/O Board
Thank you for purchasing Conduant’s FPDP Digital I/O Board. Your purchase
includes the FPDP Digital I/O board that plugs into the PCI bus, device drivers,
software development tools, and additional utility software.

The FPDP Digital I/O Board can be used to capture one or two FPDP input
streams into a standard PC. It can capture 32 bits/4 bytes of parallel data at up to 50
MHz via standard FPDP protocol. For FPDP details, please read the chapter
“External Port” in this manual.

The PCI bus is a high performance I/O bus designed for attaching peripheral
devices to computer systems. It is found in computing systems from many different
manufacturers and is supported by most major operating systems. PCI data
acquisition cards (digital oscilloscopes, frame grabbers, telemetry interfaces, etc) are
available from many manufacturers to collect data and record it to system memory in
real time (as it is collected).

The device drivers and API (Application Programming Interface) provide for a
smooth integration of the FPDP Digital I/O Board with the data acquisition device
and/or analysis software. Please feel free to offer suggestions and request new
features.

What you need to get started
To set up and use the FPDP Digital I/O Board, you will need the following:

∗ The FPDP Digital I/O Board

∗ The StreamStor Software Development Kit

∗ A computer and chassis

∗ An empty full-length PCI slot or 3U CompactPCI slot (depending on model).

∗ This manual

Software Programming Choices
The StreamStor Software Development Kit (SDK) includes a Windows DLL library,
a Linux function library and drivers providing control and data retrieval functions
necessary for using the FPDP Digital I/O Board. Application software can be
developed in any environment capable of utilizing these library functions. This

12

C H A P T E R 1 : I N T R O D U C T I O N

includes the various Windows programming languages such as Visual C++ and
Visual Basic as well as graphical programming environments such as LabVIEW.

Unpacking
Carefully inspect all shipping packages for any sign of damage. In particular, look for
wrinkled or bent corners, holes, or other signs of bad handling or abuse. If you
notice any damage to the packaging, immediately open the boxes and inspect the
contents for damage. Pay close attention to the components near the area where the
packing material was damaged. Report any damage to the carrier and Conduant
immediately.

FPDP Digital I/O Board
The FPDP Digital I/O board is shipped in a specially designed antistatic box to
prevent electrostatic damage to the board. To avoid damage in handling the board,
take the following precautions:

∗ Ground yourself with a grounding strap or grasp a conductive, grounded object
to dissipate any static charge while handling the board.

∗ Always store the board in its antistatic box when not installed in a computer
system.

∗ Inspect the board carefully before installing in the computer. Notify Conduant
immediately if the board appears damaged. Do not install a damaged board into
your computer.

∗ Never touch any exposed connector pins or component leads.

∗ Avoid bending or twisting the board.

13

Chapter 2

Installation

15

C H A P T E R 2 : I N S T A L L A T I O N

Components
Your FPDP Digital I/O Board is shipped with this user manual and installation
software (on CD-ROM).

Planning Your Installation

 CAUTION: Please read the entire installation section of this manual before
starting to install the FPDP Digital I/O Board. This manual assumes
that the user is knowledgeable and comfortable with basic computer
cabling, power connections, inserting cards into the PCI bus, and use
of the computer operating system. If you are unsure as to how to
proceed, please contact Conduant.

The cables supplied with your system are the maximum recommended length.
Avoid the use of longer cables since they may cause intermittent data loss. Avoid
pinching or routing over sharp edges to prevent cable damage.

 CAUTION: When removing cables from the FPDP Digital I/O Board, ALWAYS
use the ejector tabs to gently free the cables from the board. NEVER
pull on the cables to free them from the board.

Hardware Installation
FPDP Digital I/O Board

Installation requires a PCI slot that can accommodate a full size card and has a card
support guide. The following are general instructions for installing your FPDP
Digital I/O Board. You should also consult your computer user manual or technical
reference for more specific instructions and warnings.

 CAUTION: Over flexing the FPDP Digital I/O Board will damage it. Be careful
to prevent damage to any components on the backside of the board if
you lay the card down.

1. Turn off and unplug your computer.

2. Remove the top cover or access port to the I/O bus.

16

C H A P T E R 2 : I N S T A L L A T I O N

3. Remove the expansion slot cover on the back panel of the computer for the slot
into which you intend to install the FPDP Digital I/O Board.

4. Insert the FPDP Digital I/O Board into the chosen PCI slot. Gently rock the
board to ease it into place. It may be a tight fit but do not force the board into
place. Make sure that the card support bracket lines up correctly with the
support provided in the computer chassis.

5. Screw the mounting bracket to the back panel of the computer chassis.

Installing the Software
Your FPDP Digital I/O Board was shipped with the Software Development Kit on
CD-ROM. This section describes how to install it.

After you have installed the FPDP Digital I/O Board, power up your computer.
On Windows systems, when ready, run the setup.exe program on the CD-ROM
to start the installation process. On Linux systems, refer to the file
linux/docs/install.txt on the CD-ROM for installation instructions.

Plug and play operating systems such as Windows will detect the installation of a
FPDP Digital I/O Board and will attempt to configure it using the hardware plug
and play wizard program. The required installation information file for plug and play
installation is included on the CD-ROM. Make sure the plug and play wizard
includes the CD-ROM drive in its search so that the FPDP Digital I/O Board
drivers will be properly installed. You should not cancel the plug and play wizard
since this can create hardware conflicts in the system when using the FPDP Digital
I/O Board. Note that the setup.exe program must still be executed to install the
StreamStor SDK onto your system.

The software installation procedure will install the device drivers, library files,
example programs and all other components of the SDK onto your system.

The StreamStor SDK does not include software interfaces or drivers used for the
control of data acquisition cards made by other manufacturers. However, it does
include some sample programs to help in your software development efforts. Other
drivers and examples may be available depending on your choice of data acquisition
hardware. Contact Conduant support for more information.

Always review the readme.html file included with the SDK for the latest
information not included in this manual. Also, check the Conduant web site
periodically for software updates. Software updates may include new features and
capabilities as well as important fixes and improved hardware support. Users who do
not have access to the Internet can request updates by calling Conduant Technical
Support

17

Chapter 3

Software Development Kit (SDK)

19

C H A P T E R 3 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

Introduction
Conduant makes it easy for system designers to use the FPDP Digital I/O Board by
providing an Application Programming Interface (API) library. This library provides
the control software for the FPDP Digital I/O Board in the form of DLLs
(Dynamic Link Libraries) for Windows and an archive library for Linux that can be
accessed by user application software.

The following pages define the functions provided by the library for controlling the
FPDP Digital I/O Board. It is suggested that you periodically check the Conduant
Web Site for updates. If you do not have Internet access, feel free to call and ask for
technical support. We’ll be happy to send you the latest updates.

Software Components
The SDK software components include operating system device drivers, support
files, programming libraries and utility programs.

Device Driver
The StreamStor SDK provides device driver support for Windows 2000, Windows
XP and Linux operating systems. The drivers are installed automatically by the
supplied setup program. On Windows systems, the device driver is named
windrvr6.sys. The Linux device driver is installed as a kernel module named
windrvr6.o. On Linux systems, refer to the file linux/docs/install.txt
on the CD-ROM for driver installation instructions.

Support files
The FPDP Digital I/O Board support files (sspxf.bib,sspxf-1.bib,
ssatap3.bib) located in the installation directory are required for proper
initialization of the board after power-on or reset. On Windows computers, the
location of these files is defined by a registry entry created by the installation program
that specifies the installation directory where these files are installed by default. This
registry setting may be changed if these files are moved to an alternate directory. The
registry path is:

“HKEY_LOCAL_MACHINE\SOFTWARE\Conduant\StreamStor SDK\BibPath”

On Linux, the environment variable STREAMSTOR_BIB_PATH is used to specify
this directory path.

The Windows DLL for the StreamStor API is named xlrapi.dll. This file is
installed into the main directory where FPDP Digital I/O Board files are located.
When developing custom applications you must make sure this file is available in a
directory where the operating system searches for DLL files.

20

C H A P T E R 3 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

The Linux library is named libssapi.a and all functions are statically linked into
the user application from this library archive.

 CAUTION: Modifying the Windows registry incorrectly can irreparably damage
your Windows installation.

Windows Uninstall
The StreamStor SDK can be easily uninstalled in Windows by using the
“Add/Remove Software” wizard in the control panel. Simply select “StreamStor
SDK” and all installed components will be automatically removed. You can also
select “Remove StreamStor SDK” in the StreamStor menu.

Windows Library
The software development kit includes a DLL library for Windows based user
applications. The required DLL file is xlrapi.dll. The library file
xlrapi.lib is also included for linking the DLL functions to a user program.
The required include files are xlrapi.h and xlrtypes.h. Only the
xlrapi.h file needs to be included in a user program. Example programs are
included in the SDK. All of the include files are installed automatically by the
installation software in the “Include” directory. The library file for linking user
programs is installed in the “Lib” directory and the DLL is installed in the
StreamStor installation directory.

Linux Uninstall
The StreamStor SDK can be easily uninstalled on Linux by removing the installation
directory and the WinDriver module. To do so, enter the following commands as
root where <InstallDir> is the full path name where the StreamStor SDK is
installed and <WinDriverModule> is the name of the WinDriver module (i.e.,
windrvr6).

1. Remove the SDK installation directory as follows:

rm –rf <InstallDir>

For example, to remove the entire SDK:

rm –rf /usr/local/streamstor

2. Remove the WinDriver module as follows:

a) Verify that the WinDriver module is not in use.

b) Unload the WinDriver module by entering:

rmmod <WinDriverModule>

21

C H A P T E R 3 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

c) Remove the old device node by entering:

rm –rf /dev/<WinDriverModule>

d) Remove the system startup file (if it exists) by entering:

rm –rf /etc/.windriver.rc

e) Remove the user startup file (if it exists) by entering:

rm –rf $HOME/.windriver.rc

Linux Configuration/Test Utilities
Two Linux utility programs are included with the SDK to test the FPDP Digital I/O
Board for proper configuration and functionality. If you have just received your
FPDP Digital I/O Board or if you are experiencing problems, running these
programs will perform configuration and confidence tests to insure that your system
is working properly.

Linux programs that use the StreamStor SDK (such as the utilities below) require
that the environment variable STREAMSTOR_BIB_PATH be set and exported to the
SDK directory containing the StreamStor *.bib files. For example:

STREAMSTOR_BIB_PATH=/usr/local/streamstor/linux/bib

export STREAMSTOR_BIB_PATH

The program ssopen simply attempts to open the StreamStor and then closes it.
To execute it:

1. cd <InstallDir>/linux/util

2. ./ssopen

If your system can communicate with the StreamStor board, you should see this
output (note that if your system has no drives, you can ignore the values
displayed for DriveFail and DriveFailNumber):

Attempting to open StreamStor...
StreamStor opened successfully!
Device Status:
 SystemReady-> 1
 MonitorReady-> 0
 DriveFail-> 0
 DriveFailNumber-> 0
 SysError-> 0
 SysErrorCode-> 0
 CtlrError-> 0

22

C H A P T E R 3 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

Linux Library
When the SDK is installed on a Linux system, a static function library is installed
named libssapi.a. It contains all the StreamStor API functions. The required
header files are xlrapi.h and xlrtypes.h. Only the xlrapi.h file must be
included by the user application. The library must be supplied to the linker to create
a final executable program. An example C program that shows how to call the SDK
library functions and a corresponding gcc makefile are in the directory
<InstallDir>/Linux/example.

API Functions
Chapter 4 describes each API command. Table 1 is a summary of the API functions.

Table 1 - API Function Summary

FUNCTION DESCRIPTION
XLRApiVersion Report version of API library in use.
XLRArmFPDP Move StreamStor from a ready to record state

when a synch pulse is received.
XLRBindInputChannel Binds a channel for input into FPDP Digital

I/O Board.
XLRBindOutputChannel Binds a channel for output from FPDP

Digital I/O Board.
XLRCardReset Reset an FPDP Digital I/O Board card.
XLRClearChannels Unbinds all input and output channels.
XLRClose Close device and release exclusive access.
XLRDeviceFind Report number of FPDP Digital I/O Boards

present in system.
XLRGetBaseAddr Get base address (physical) of FPDP Digital

I/O Board data window.
XLRGetBaseRange Get size of FPDP Digital I/O Board data

window.
XLRGetDeviceInfo Retrieve hardware configuration information.
XLRGetDeviceStatus Get status of device.
XLRGetErrorMessage Get error string for supplied error code.
XLRGetFIFOLength Return the amount of data in the FIFO.
XLRGetLastError Return error code of last failure.
XLRGetMode Return the input/output mode of the board.
XLRGetSystemAddr Return the kernel address of the FPDP Digital

I/O Board data window.

23

C H A P T E R 3 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRGetVersion Report version of the FPDP Digital I/O

Board firmware components.
XLRGetWindowAddr Get user virtual address of the FPDP Digital

I/O Board data window.
XLROpen Open the device for exclusive access.
XLRReadFifo Read data during a FIFO operation.
XLRRecord Start FIFO data transfer.
XLRReset Reset and close an open device.
XLRSelectChannel Select the channel for subsequent commands.
XLRSetFPDPMode Set the operating mode of the FPDP data

port.
XLRSetMode Set input/output mode of the board.
XLRSetPortClock Set the clock speed of the external port.
XLRSetReadLimit Set the range of any read accesses performed

from an outside bus master.
XLRStop Stop recording.

24

C H A P T E R 3 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

Data Structures
StreamStor API functions use the following structures. Refer to the end of the Function Reference
section for details on each structure and its members.

S_DEVINFO - Device info parameters
S_DEVSTATUS - Device status flags
S_READDESC - Parameters defining read/write requests
S_XLRSWREV - Various device version strings

25

Chapter 4

Function Reference

27

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRApiVersion

Syntax:

char *XLRApiVersion(char *versionstring)

Description:

XLRApiVersion returns the API version as a string formatted as a major.minor version
number.

Parameters:

• versionstring is a pointer to a character string to hold the returned version. It must be
of minimum length XLR_VERSION_LENGTH.

Return Value:

The API version is returned in versionstring.

Usage:

/* Read XLR API version into string */
char xlrstring[XLR_VERSION_LENGTH];

XLRApiVersion(xlrstring);
printf(“StreamStor API version is %s”, xlrstring);

See Also:

XLRGetVersion.

28

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRArmFPDP

Syntax:

XLR_RETURN_CODE XLRArmFPDP(SSHANDLE xlrDevice)

Description:

XLRArmFPDP moves StreamStor from a ready to record state, to recording when an FPDP
SYNC* pulse is received. StreamStor must already be in record mode, and
SS_OPT_FPDPSYNCARM must be set. If no SYNC* pulse is received, no data will be recorded.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;

xlrStatus = XLROpen(1, &xlrDevice);
xlrStatus = XLRSetMode(xlrDevice, SS_MODE_PASSTHRU);

// … Bind and configure channels as desired …
// … Configure FPDP as desired …

if (XLRRecord (xlrDevice, 0, 0) != XLR_SUCCESS) {
 XLRClose(xlrDevice);
 exit(1);
}
if(XLRArmFPDP(xlrDevice) != XLR_SUCCESS)
{
 XLRClose (xlrDevice);
 exit(1);
}

// Waiting for SYNC pulse – data will be recorded to disk as soon
// as SYNC is received.

See Also:

XLRSetFPDPOption, XLRRecord and XLRAppend.

29

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRBindInputChannel

Syntax:

XLR_RETURN_CODE XLRBindInputChannel(SSHANDLE xlrDevice, UINT
channel)

Description:

XLRBindInputChannel binds a channel for input INTO the Digital FPDP I/O Board. In
other words, “input” is relative to the board. To use a channel, that channel must be bound to
the board via this command.

XLRClearChannels must be called to unbind the channel(s) before calling
XLRBindInputChannel.

Details on channel selection are in the “Channel Description and Selection” chapter of this
manual.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

• channel is the channel number to bind – this is card specific. Valid channels are:

 0 – the PCI Bus

 30 – the top FPDP connector

 31 – the front FPDP connector

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Note: CHANGING MODES CLEARS ALL INPUT AND OUTPUT CHANNELS.
CHANNELS MUST BE BOUND AFTER THE MODE IS SELECTED.

30

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

Usage:

SSHANDLE xlrDevice;

xlrStatus = XLROpen(1, &xlrDevice);
xlrReturnCode = XLRSetMode(xlrDevice, SS_MODE_PASSTHRU);

xlrStatus = XLRClearChannels(xlrDevice);

// For input over the PCI bus, bind to channel zero.
xlrStatus = XLRBindInputChannel(xlrDevice, 0);
if(xlrStatus != XLR_SUCCESS)
{
 return(1);
}

See Also:

XLRClearChannels, XLRBindOutputChannel, and XLRSelectChannel.

31

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRBindOutputChannel

Syntax:

XLR_RETURN_CODE XLRBindOutputChannel(SSHANDLE xlrDevice, UINT
channel)

Description:

XLRBindOutputChannel binds a channel for output FROM the FPDP Digital I/O Board.
In other words, “output” is relative to FPDP Digital I/O Board. To read from FIFO or send
data over a particular channel, that channel must be bound to the board via this command.
Only one channel at a time can be selected to output data.

XLRClearChannels must be called to unbind the channel(s) before calling
XLRBindOutputChannel.

Details on channel selection are in the “Channel Description and Selection” chapter of this
manual.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

• channel is the channel number to bind – this is card specific. Valid channels are:

 0 – the PCI Bus

 30 – the top FPDP connector

 31 – the front FPDP connector

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Note: CHANGING MODES CLEARS ALL INPUT AND OUTPUT CHANNELS.
CHANNELS MUST BE BOUND AFTER THE MODE IS SELECTED.

32

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

Usage:

SSHANDLE xlrDevice;
S_READDESC readDesc;

xlrStatus = XLROpen(1, &xlrDevice);
xlrReturnCode = XLRSetMode(xlrDevice, SS_MODE_PASSTHRU);
xlrStatus = XLRClearChannels(xlrDevice);
xlrStatus = XLRSelectChannel (xlrDevice, 0);

// Bind the PCI Bus channel for output.
xlrStatus = XLRBindOutputChannel(xlrDevice, 0);
if(xlrStatus != XLR_SUCCESS)
{
 return(1);
}

See Also:

XLRClearChannels, XLRBindInputChannel, and XLRSelectChannel.

33

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRCardReset

Syntax:

XLR_RETURN_CODE XLRCardReset(UINT index)

Description:

XLRCardReset will attempt to reset an FPDP Digital I/O Board and re-initialize the
hardware and firmware. This function should be used only as a last resort.

Parameters:

• index is the FPDP Digital I/O Board index number.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

xlrReturnCode = XLRCardReset(1);

See Also:

XLROpen and XLRReset.

34

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRClearChannels

Syntax:

XLR_RETURN_CODE XLRClearChannels(SSHANDLE xlrDevice)

Description:

XLRClearChannels unbinds all input and output channels from the FPDP Digital I/O
Board. The FPDP Digital I/O Board cannot be reading or writing, and new input and output
channels must be bound before any data transfer operation is started. XLRClearChannels
must be called before calling XLRBindInputChannel or XLRBindOutputChannel.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

// Open the device
xlrStatus = XLROpen(1, &xlrDevice);

…
xlrStatus = XLRClearChannels(xlrDevice);
xlrStatus = XLRBindInputChannel(xlrDevice, 0);

…
// Close device before exiting.
XLRClose(xlrDevice);

See Also:

XLRBindInputChannel, XLRBindOutputChannel, and XLRSelectChannel.

35

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRClose

Syntax:

void XLRClose(SSHANDLE xlrDevice)

Description:

XLRClose closes the FPDP Digital I/O Board. This should be called before exiting an
application that has opened an FPDP Digital I/O Board with XLROpen. No other application
can open the FPDP Digital I/O Board until this function has been called.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

none

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

// Open the device.
xlrStatus = XLROpen(1, &xlrDevice);
.
.
.
// Close device before exiting.
XLRClose(xlrDevice);

See Also:

XLROpen.

36

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRDeviceFind

Syntax:

UINT XLRDeviceFind()

Description:

XLRDeviceFind searches the PCI bus(es) and returns the number of FPDP Digital I/O
Boards present in the system.

Parameters:

None.

Return Value:

This function returns the number of FPDP Digital I/O Boards in the system. If the driver has
not been installed properly, this function returns zero.

Usage:

UINT NumCards;

if(NumCards = XLRDeviceFind())
{
 // There are FPDP Digital I/O Boards on this system.
 printf(“FPDP Digital I/O Boards found: %d\n”, NumCards);
}
else
{
 // No FPDP Digital I/O Boards on the system.
 printf(“No FPDP Digital I/O Boards detected!\n”);
}

See Also:

XLROpen.

37

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRGetBaseAddr

Syntax:

ULONG XLRGetBaseAddr(SSHANDLE xlrDevice)

Description:

XLRGetBaseAddr returns the physical address of the recording data window. This address
can be used to program PCI hardware devices for direct card-to-card data transfer. The address
returned from this function is NOT a valid user address.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

This function returns the physical PCI address as a 32 bit unsigned integer.

Usage:

ULONG xlrAddress;
SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

xlrStatus = XLROpen(1, &xlrDevice);
if(xlrStatus != XLR_SUCCESS)
{
 // Error opening FPDP Digital I/O Board
}
else
{
 xlrAddress = XLRGetBaseAddr(xlrDevice);
}

38

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRGetBaseRange

Syntax:

ULONG XLRGetBaseRange(SSHANDLE xlrDevice)

Description:

XLRGetBaseRange returns the size (in bytes) of the FPDP Digital I/O Board data window.
This range of addresses is intended to be used by hardware transferring data that cannot be
programmed to write with a non-incrementing address. Note that the address used to write to
FPDP Digital I/O Board does not effect the storage location of the data; FPDP Digital I/O
Board always stores data sequentially in the order it is written regardless of the address.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

This function returns the window size in bytes.

Usage:

ULONG xlrAddress, xlrRange;
SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

xlrStatus = XLROpen(1, &xlrDevice);
if(xlrStatus != XLR_SUCCESS)
{
 // Error opening FPDP Digital I/O Board
}
else
{
 xlrAddress = XLRGetBaseAddr(xlrDevice);
 xlrRange = XLRGetBaseRange(xlrDevice);
}
// DMA Hardware may now be programmed to write to any address from
// xlrAddress to (xlrAddress + xlrRange)

39

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRGetDeviceInfo

Syntax:

XLR_RETURN_CODE XLRGetDeviceInfo(SSHANDLE xlrDevice, PS_DEVINFO
pDevInfo)

Description:

XLRGetDeviceInfo retrieves information from the FPDP Digital I/O Board about its
physical configuration.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

• pDevInfo is a pointer to an S_DEVINFO structure.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
S_DEVINFO devInfo;
XLR_RETURN_CODE xlrReturn;

xlrReturn = XLROpen(1, &xlrDevice);
if(xlrReturn != XLR_SUCCESS)
 return(1);
xlrReturn = XLRGetDeviceInfo(xlrDevice, &devInfo);
if(xlrReturn != XLR_SUCCESS)
 return(1);
printf(“FPDP Digital I/O Board serial number is: %d”, devInfo.SerialNum);

40

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRGetDeviceStatus

Syntax:

XLR_RETURN_CODE XLRGetDeviceStatus(SSHANDLE xlrDevice,
PS_DEVSTATUS pDevStatus)

Description:

XLRGetDeviceStatus retrieves the status of the FPDP Digital I/O Board.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

• pDevStatus is a pointer to an S_DEVSTATUS structure.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
S_DEVSTATUS devStatus;
XLR_RETURN_CODE xlrReturn;

xlrReturn = XLROpen(1, &xlrDevice);
if(xlrReturn != XLR_SUCCESS)
 return(1);
xlrReturn = XLRGetDeviceStatus(xlrDevice, &devStatus);
if(xlrReturn != XLR_SUCCESS)
 return(1);
if(devStatus.FifoFull)

printf(“Fifo is full.”);
else
 printf(“Fifo is not full.”);

41

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRGetErrorMessage

Syntax:

XLR_RETURN_CODE XLRGetErrorMessage(char *string, XLR_ERROR_CODE
err)

Description:

XLRGetErrorMessage returns the error message of the most recent API failure.

Parameters:

• string is a pointer to a string to accept the error message of at least
XLR_ERROR_LENGTH size.

• err is an error code returned from XLRGetLastError.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrHandle;
S_DEVSTATUS devStatus;
XLR_RETURN_CODE xlrReturn;
XLR_ERROR_CODE xlrError;
char temp[XLR_ERROR_LENGTH];

xlrStatus = XLROpen(1, &xlrDevice);

…
xlrReturn = XLRGetDeviceStatus(xlrDevice, &devStatus);
if(xlrReturn != XLR_SUCCESS)
{
 Printf (“Cannot get device status.\n”);
 xlrError = XLRGetLastError();
 XLRGetErrorMessage(temp, xlrError);
 printf(“Error message: %s\n”, temp);
 exit(1);
}

See Also:

XLRGetLastError.

42

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRGetFIFOLength

Syntax:

DWORDLONG XLRGetFIFOLength(SSHANDLE xlrDevice)

Description:

XLRGetFIFOLength returns the amount of data currently in the FIFO. This function is only
valid when the FPDP Digital I/O Board is in pass through mode (SS_MODE_PASSTRHU). If
the FPDP Digital I/O Board is not in pass through mode, or is not currently moving data,
XLRGetFIFOLength will return 0.

If you retrieve the error code after the XLRReadFifo call, you may get the XLR_ERR_EMPTY
("No Data") error. This indicates that XLRReadFifo was not able to return the requested
number of bytes. This does not necessarily indicate an error condition. Rather, it may indicate
that transfer of data has ended normally but that the last transfer into the FIFO did not fill it to
capacity. In this case, you may want to call XLRGetFIFOLength to get the number of bytes
left in the FIFO and then call XLRReadFifo with that length. See Example 1 in the “Channel
Description and Selection” chapter of this manual.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

Usage:

SSHANDLE xlrDevice;
DWORDLONG length = 0;

xlrStatus = XLROpen(1, &xlrDevice);
xlrReturnCode = XLRSetMode(xlrDevice, SS_MODE_PASSTHRU);

// … Bind and configure channels as desired …
// … Configure FPDP as desired …

// Start data transfer by calling XLRRecord.
xlrReturnCode = XLRRecord(xlrDevice, 0, 0);

length = XLRGetFIFOLength(xlrDevice);

See Also:

XLRSetMode, XlrReadFIFO and XLRGetLength.

43

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRGetLastError

Syntax:

XLR_ERROR_CODE XLRGetLastError(void)

Description:

XLRGetLastError returns the error code of the most recent API failure.

Parameters:

None.

Return Value:

This function returns the error code (see Appendix A).

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;
XLR_ERROR_CODE xlrError;
char temp[XLR_ERROR_LENGTH];

xlrStatus = XLROpen(1, &xlrDevice);
if(xlrStatus != XLR_SUCCESS)
{
 printf (“Cannot open FPDP Digital I/O Board one.\n”);
 xlrError = XLRGetLastError();
 XLRGetErrorMessage(temp, xlrError);
 printf(“Error Message: %s\n”, temp);
 exit(1);
}

See Also:

XLRGetErrorMessage.

44

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRGetMode

Syntax:

XLR_RETURN_CODE XLRGetMode(SSHANDLE xlrDevice, SSMODE pMode)

Description:

XLRGetMode returns the input/output path (or “port mode”) on the FPDP Digital I/O Board
where the mode was previously set with the XLRSetMode command.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

• pmode is a pointer to an SSMODE variable that will receive the mode.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrHandle;
XLR_RETURN_CODE xlrStatus;
SSMODE portMode;

xlrStatus = XLROpen(1, &xlrDevice);
xlrStatus = XLRSetMode(xlrDevice, SS_MODE_PASSTHRU);
xlrStatus = XLRGetMode(xlrDevice, &portMode);

if (portMode == SS_MODE_PASSTHRU)
{
 printf (“FPDP Digital I/O Board is in PASSTHRU mode.\n”);
}

See Also:

XLRSetMode.

45

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRGetSystemAddr

Syntax:

ULONG XLRGetSystemAddr(SSHANDLE xlrDevice)

Description:

XLRGetSystemAddr returns the kernel address of the recording data window. This address
can be used from device drivers or other kernel level software. The address returned from this
function is NOT a valid user address.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

This function returns the physical PCI address as a 32 bit unsigned integer.

Usage:

ULONG xlrAddress;
SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

xlrStatus = XLROpen(1, &xlrDevice);
if(xlrStatus != XLR_SUCCESS)
{
 // Error opening FPDP Digital I/O Board
}
else
{
 xlrAddress = XLRGetSystemAddr(xlrDevice);
}

46

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRGetVersion

Syntax:

XLR_RETURN_CODE XLRGetVersion(SSHANDLE xlrDevice, PS_XLRSWREV
pVersion)

Description:

XLRGetVersion gets the API and firmware version information from an FPDP Digital I/O
Board.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

• pVersion is a pointer to an S_XLRSWREV structure to hold the version strings returned.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
S_XLRSWVER swVersion;
char temp[XLR_ERROR_LENGTH];

xlrStatus = XLROpen(1, &xlrDevice);

…
xlrReturnCode = XLRGetVersion(xlrDevice, &swVersion);
if(xlrReturnCode != XLR_SUCCESS)
{
 xlrError = XLRGetLastError();
 XLRGetErrorMessage(temp, xlrError);
 printf(“%s\n”, temp);
 exit(1);
}
printf(“Firmware version: %s\n”, swVersion.FirmwareVersion);

See Also:

XLRApiVersion.

47

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRGetWindowAddr

Syntax:

PULONG XLRGetWindowAddr(SSHANDLE xlrDevice)

Description:

XLRGetWindowAddr returns the user virtual address of the recording data window. This
address can be used to directly write data to the FPDP Digital I/O Board from a user program.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

This function returns a pointer to the data window mapped into the user virtual address space.

Usage:

PULONG xlrAddress;
SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrReturn;

xlrReturn = XLROpen(1, &xlrDevice);
if(xlrReturn == XLR_SUCCESS)
{
 xlrAddress = XLRGetWindowAddr(xlrDevice);
 *xlrAddress = someData;

 /* someData has been written to the FPDP Digital I/O Board.
 * Note that xlrAddress does not need to be incremented
 * for subsequent writes.
 */
}

48

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLROpen

Syntax:

XLR_RETURN_CODE XLROpen(UINT devIndex, SSHANDLE *pXlrHandle)

Description:

XLROpen opens an FPDP Digital I/O Board and initializes the hardware and firmware. The
device is transitioned to system ready state if required. This function must be called before any
other API function. After successful completion of this function, the handle pointed to by
pXlrHandle can be used for all subsequent API calls.

NOTE: You should call XLRClose even if XLROpen returns XLR_FAIL.

Parameters:

• devIndex identifies the desired FPDP Digital I/O Board to open when multiple FPDP
Digital I/O Boards are in use. Use 1 for single board systems. Use XLRDeviceFind to
get the number of FPDP Digital I/O Boards installed.

• pXlrHandle is a pointer to a system handle for initialization. Successful completion loads
this parameter with a valid handle to the hardware device to use in subsequent API calls.
*pXlrHandle is assigned the value INVALID_SSHANDLE on failure.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrHandle;
XLR_RETURN_CODE xlrReturnCode;
ULONG xlrError;
char errString[XLR_ERROR_LENGTH];

xlrReturnCode = XLROpen(1, &xlrHandle);
 // … Do FPDP Digital I/O work …
XLRClose(xlrHandle);

See Also:

XLRClose and XLRDeviceFind.

49

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRReadFifo

Syntax:

XLR_RETURN_CODE XLRReadFifo(SSHANDLE xlrDevice, PULONG Buffer,
ULONG Length, BOOLEAN Direct)

Description:

XLRReadFifo reads data from the FPDP Digital I/O Board during a FIFO operation. Data
can continue to be read with this function until the FIFO is empty or XLRStop is called. Note
that XLRRecord must be called prior to calling XLRReadFifo. A second call to XLRStop is
required to take the board out of record mode.

See Example 1 in the “Channel Description and Selection” chapter of this manual to see how
this command can be used.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

• Buffer is the address of the buffer to receive the read data.

• Length is the length of data to transfer in bytes.

• Direct is a flag that indicates if the supplied Buffer address is a physical address for direct
transfer. For normal transfer to a user memory buffer this flag should be FALSE (0).

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

50

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;
ULONG myBuffer[40000];

xlrStatus = XLROpen(1, &xlrDevice);
xlrStatus = XLRSetMode(xlrDevice, SS_MODE_PASSTHRU);
// … Bind and configure channels as desired …
// … Configure FPDP as desired …

xlrStatus = XLRRecord(xlrDevice, 0, 0);

…
xlrStatus = XLRReadFifo(xlrDevice, myBuffer, sizeof(myBuffer), FALSE);

// Stop the transfer of data.
xlrStatus = XLRStop(xlrDevice);

// Take the board out of record mode.
xlrStatus = XLRStop(xlrDevice);

See Also:

XLRGetFifoLength, XLRRecord, XLRSetMode and XLRSetFPDPMode.

51

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRRecord

Syntax:

XLR_RETURN_CODE XLRRecord(SSHANDLE xlrDevice, BOOLEAN WrapEnable,
SHORT ZoneRange)

Description:

XLRRecord initiates the transfer of data from the FIFO. When called, the FPDP Digital I/O
board will start reading data or will start writing over a previously specified channel.

You must call XLRSetMode to put the FPDP Digital I/O board in pass through mode prior to
calling XLRRecord.

See the examples in the “Channel Description and Selection” chapter of this manual.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

• WrapEnable is ignored.

• ZoneRange is ignored.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

xlrStatus = XLROpen(1, &xlrDevice);
xlrStatus = XLRSetMode(xlrDevice, SS_MODE_PASSTHRU);

// … Bind and configure channels as desired …
// … Configure FPDP as desired …

…
// Start data transfer.
xlrStatus = XLRRecord(xlrDevice, 0, 0);

…
// End data transfer.
XLRStop(xlrDevice);

See Also:

XLRWrite, XLRWriteData, XLRReadFifo, XLRGetFIFOLength.

52

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRReset

Syntax:

XLR_RETURN_CODE XLRReset(SSHANDLE xlrDevice)

Description:

XLRReset will attempt to reset an FPDP Digital I/O Board and re-initialize the hardware and
firmware. This function should be used only as a last resort.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;
XLR_RETURN_CODE xlrReturnCode;

xlrStatus = XLROpen(1, &xlrDevice);

…
xlrReturnCode = XLRReset(xlrDevice);

See Also:

XLRCardReset.

53

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRSelectChannel

Syntax:

XLR_RETURN_CODE XLRSelectChannel(SSHANDLE xlrDevice, UINT channel)

Description:

XLRSelectChannel selects the channel that future commands will operate on. A channel can
be selected and operated on regardless of whether or not it is bound.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

• channel is the number of the channel to select, where channel is one of:

 0 – to select the PCI channel.

 30 – to select the FPDP channel over the FPDP top connector.

 31 – to select the FPDP channel over the FPDP front connector.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

xlrStatus = XLROpen(1, &xlrDevice);.
xlrStatus = XLRSetMode(xlrDevice, SS_MODE_PASSTHRU);
xlrStatus = XLRClearChannels(xlrDevice);

// Bind TOP port (connector) as input channel.
xlrStatus = XLRBindInputChannel(xlrDevice, 30);

// Select and set FPDP options on TOP port.
xlrStatus = XLRSelectChannel(xlrDevice, 30);
xlrStatus =
 XLRSetFPDPMode(xlrDevice, SS_FPDP_RECVMASTER, SS_OPT_FPDPNRASSERT);

See Also:

XLRClearChannels, XLRBindInputChannel, XLRBindOutputChannel,
XLRSetMode and XLRSetFPDPMode.

54

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRSetFPDPMode

Syntax:

XLR_RETURN_CODE XLRSetFPDPMode(SSHANDLE xlrDevice, FPDPMODE Mode,
FPDPOP option)

Description:

XLRSetFPDPMode is used to set the operating mode of the external port. For details on using
FPDP, refer to the “External Port” chapter of this manual.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

• Mode is a constant that defines the mode of operation. Possible values are:
 SS_FPDP_RECV – Sets the FPDP Digital I/O Board port to FPDP/R mode.

 SS_FPDP_RECVMASTER – Sets the FPDP Digital I/O Board to FPDP/RM mode.

 .SS_FPDP_XMIT – Sets the FPDP Digital I/O Board to FPDP/T mode.

 SS_FPDP_XMITMASTER – Sets the FPDP Digital I/O Board to FPDP/TM mode.

 SS_FPDP_RECVMASTER_CLOCKS – Sets the FPDP Digital I/O Board to
FPDP/RMCM mode.

• option is used to specify various options that modify the operation of the FPDP port.
Possible values are:

 0 (zero) – Disables all options.

 SS_OPT_FPDPNRASSERT – Assert the “Not ready” signal on the FPDP bus when
not transferring data. This prevents data flow on FPDP when the FPDP Digital I/O
Board is not in transfer mode.

 SS_OPT_FPDPSTROB – Enables the data strobe clock (TTL strobe signals). Default
is pstrob clock (PECL strobe signals).

 SS_OPT_FPDPNOPLL – This option should be set when the FPDP clock will be
operating at less than 10 MHz while transferring data. Default is this option is off.

55

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

 SS_OPT_FPDPSINGLEFRAME – When transferring data in, the FPDP port on the
FPDP Digital I/O Board will wait for an FPDP SYNC* pulse before any data on the
FPDP interface is placed in the FIFO. All valid data prior to and during the first cycle of
the SYNC* pulse will be discarded. When transferring data out, the FPDP Digital I/O
Board will generate a single cycle FPDP SYNC* pulse a few clocks prior to asserting
DVALID* and transmitting data. The default state of this option is off.

 SS_OPT_FPDPSYNCARM - This option is used when transferring data in. When set,
the FPDP Digital I/O Board will be configured and ready to transfer data into the
FIFO. However, data will not be transferred until XLRArmFPDP is called and an
FPDP SYNC* pulse is received.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

xlrStatus = XLROpen(1, &xlrDevice);

…
// Configure channel 30(the top connector) for FPDP.
xlrStatus = XLRSelectChannel(xlrDevice, 30);

// Example 1: Set the FPDP port mode to FPDP/R and use the default
// options on channel 30.
xlrStatus = XLRSetFPDPMode(xlrDevice, SS_FPDP_RECV, 0);

// Example 2: Enable the data strobe clock and "Not Ready"
// assert options on channel 30.
xlrStatus = XLRSetFPDPMode(xlrDevice,
 FPDP_RECV, SS_OPT_FPDPSTROB|SS_OPT_NRASSERT);

// Example 3: Enable data strobe clock on channel 30.
xlrStatus = XLRSetFPDPMode(xlrDevice, FPDP_RECV, SS_OPT_FPDPSTROB);

// Configure channel 31(the front connector) for FPDP.
xlrStatus = XLRSelectChannel(xlrDevice, 31);

// Example 4: Enable FPDP front connector to FPDP/RM mode
// on channel 31.
xlrStatus = XLRSetFPDPMode(xlrDevice, SS_FPDP_RECVMASTER, 0);

See Also:

XLRSetMode and XLRSelectChannel.

56

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRSetMode

Syntax:

XLR_RETURN_CODE XLRSetMode(SSHANDLE xlrDevice, SSMODE Mode)

Description:

XLRSetMode is used to set the input/output path and functionality of the FPDP Digital I/O
Board.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

• Mode is a constant that defines the mode of operation. The only valid mode for this release
is SS_MODE_PASSTHRU. In this mode, data comes in on one channel and then is sent out
(“passed through”) a different channel.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Note: CHANGING MODES CLEARS ALL INPUT AND OUTPUT CHANNELS.
CHANNELS MUST BE BOUND AFTER THE MODE IS SELECTED.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

xlrStatus = XLROpen(1, &xlrDevice);

xlrReturnCode = XLRSetMode(xlrDevice, SS_MODE_PASSTHRU);

// Channels must be cleared prior to binding.
xlrStatus = XLRClearChannels(xlrDevice);

// Input will be done over the PCI Bus, which is channel zero.
xlrStatus = XLRBindInputChannel(xlrDevice, 0);

-
// Select channel zero.
xlrStatus = XLRSelectChannel(xlrDevice, 0);

// Begin transfer of data over channel zero.
xlrStatus = XLRRecord(xlrDevice, 0, 0);

See Also:

XLRGetMode, XLRSetFPDPMode, XLRBindInputChannel and
XLRBindOutputChannel.

57

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRSetPortClock

Syntax:

XLR_RETURN_CODE XLRSetPortClock(SSHANDLE xlrDevice, UINT clock)

Description:

XLRSetPortClock is used to set the operating frequency of the external port if applicable.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

• clock is a constant that defines the desired clock frequency. Possible values are defined in
the header file xlrapi.h as SS_PORTCLOCK_xMHz values.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

// Set the external clock frequency
SSHANDLE xlrDevice;

xlrStatus = XLROpen(1, &xlrDevice);

…

xlrReturnCode = XLRSetPortClock(xlrDevice, SS_PORTCLOCK_40MHZ);

58

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRSetReadLimit

Syntax:

XLR_RETURN_CODE XLRSetReadLimit(SSHANDLE xlrDevice, ULONG Limit)

Description:

XLRSetReadLimit sets the size of the address range an outside device will be using when
reading data. This is required to prevent StreamStor hardware from discarding cached read data
when an external DMA engine recycles to a new starting read address on the PCI bus.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

• Limit is the address range size that the outside device will use when reading from
StreamStor during playback operations.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
ULONG DMA_size = 0x2000;
PULONG pBuffer;
PULONG pSSAddr;

xlrStatus = XLROpen(1, &xlrDevice);

…
xlrReturnCode = XLRSetReadLimit(xlrDevice, DMA_size);

…
// Outside device can now DMA data from StreamStor within an
// address range size defined by DMA_size.
// The following simulates this by reading from StreamStor to memory.
pBuffer = (PULONG)malloc(DMA_size);
pSSAddr = XLRGetWindowAddr(xlrDevice);

for(j = 0; j < loops; j++)
{
 for(i = 0; i < DMA_size; i += 4)
 {
 *pBuffer++ = *pSSAddr++;
 }
}

59

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

XLRStop

Syntax:

XLR_RETURN_CODE XLRStop(SSHANDLE xlrDevice)

Description:

XLRStop will halt a FIFO operation. This function should always be used to end FIFO
transfers that were started with XLRRecord.

Parameters:

• xlrDevice is the device handle returned from a previous call to XLROpen.

Return Value:

On success, this function returns XLR_SUCCESS.
On failure, this function returns XLR_FAIL.

Usage:

SSHANDLE xlrDevice;
XLR_RETURN_CODE xlrStatus;

xlrStatus = XLROpen(1, &xlrDevice);

…
xlrStatus = XLRStop(xlrDevice);

See Also:

XLRRecord.

60

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

Structure S_DEVINFO

typedef struct _DEVINFO
{
 char BoardType[XLR_MAX_NAME];
 UINT SerialNum;
 UINT NumDrives;
 UINT NumBuses;
 UINT TotalCapacity;
 UINT MaxBandwidth;
 UINT PciBus;
 UINT PciSlot;
 UINT NumExtPorts;
}S_DEVINFO, *PS_DEVINFO;

Purpose

This structure is used by the XLRGetDeviceInfo function to return data about the FPDP
Digital I/O Board configuration.

Members

• BoardType - a string holding the board type (model name) of the FPDP Digital I/O
Board.

• SerialNum - the serial number of the FPDP Digital I/O Board.

• NumDrives – not used.

• NumBuses – not used.

• TotalCapacity – not used.

• MaxBandwidth – not used.

• PciBus - the PCI bus number to which the FPDP Digital I/O Board is connected.

• PciSlot – the PCI slot number to which the FPDP Digital I/O Board is connected.

• NumExtPorts – the number of external ports.

61

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

Structure S_DEVSTATUS

typedef struct _DEVSTATUS
{
 BOOLEAN SystemReady;
 BOOLEAN BootmonReady;
 BOOLEAN Recording;
 BOOLEAN Playing;
 BOOLEAN Reserved1;
 BOOLEAN Reserved2;
 BOOLEAN Reserved3;
 BOOLEAN Reserved4;
 BOOLEAN RecordActive[XLR_MAX_VRS];
 BOOLEAN ReadActive[XLR_MAX_VRS];
 BOOLEAN FifoActive;
 BOOLEAN DriveFail;
 UINT DriveFailNumber;
 BOOLEAN SysError;
 UINT SysErrorCode;
 BOOLEAN CtlrError;
 BOOLEAN FifoFull;
 BOOLEAN Overflow[XLR_MAX_VRS];
}S_DEVSTATUS, *PS_DEVSTATUS;

Purpose

This structure holds various system status flags as returned by the XLRGetDeviceStatus
function.

Note: The array index value is always 0 for RecordActive, ReadActive, VRActive, and
Overflow.

Members

• SystemReady – System ready flag, indicates the system firmware and hardware have been
initialized successfully.

• BootmonReady – Power on boot flag, indicates that the system boot succeeded and the
system is ready for initialization (XLROpen).

• Recording – Indicates that the system is currently in FIFO transfer mode.
• Playing – not used.
• Reserved1, Reserved2, Reserved3 and Reserved4 – not used.
• RecordActive – Element 0 indicates that the system is currently transferring into FIFO.

Element 1 is not used.
• ReadActive – Element 0 indicates that the system is currently reading.
• FifoActive – Indicates that the system is currently in FIFO mode.
• DriveFail – not used.
• DriveFailNumber– not used.

62

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

• SysError – Indicates that system initialization failed.
• SysErrorCode – Holds initialization error code if SysError is TRUE.
• CtlrError – Indicates an ATA controller has failed.
• FifoFull – Indicates the system is at capacity while in FIFO mode.
• Overflow – When in mode SS_MODE_PASSTHRU (see XLRSetMode), Overflow

gets set when the external port data has overflowed the available FIFO space.

63

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

Structure S_READDESC

typedef struct _READDESC{
 PULONG BufferAddr;
 ULONG AddrHi;
 ULONG AddrLo;
 ULONG XferLength;
}S_READDESC, *PS_READDESC;

Purpose

This structure is used to define the parameters for a read or write from the FPDP Digital I/O
Board.

Members

• BufferAddr – Address of buffer to hold data from the FPDP Digital I/O Board. Must be
at least XferLength bytes.

• AddrHi – High word (32 bit) of starting byte address.

• AddrLo – Low word (32 bit) of starting byte address.

• XferLength – Number of bytes to transfer from the FPDP Digital I/O Board.

64

C H A P T E R 4 : S O F T W A R E D E V E L O P M E N T K I T (S D K)

Structure S_XLRSWREV

typedef struct _XLRSWREV
{
 char ApiVersion[XLR_VERSION_LENGTH];
 char ApiDateCode[XLR_DATECODE_LENGTH];
 char FirmwareVersion[XLR_VERSION_LENGTH];
 char FirmDateCode[XLR_DATECODE_LENGTH];
 char MonitorVersion[XLR_VERSION_LENGTH];
 char XbarVersion[XLR_VERSION_LENGTH];
 char AtaVersion[XLR_VERSION_LENGTH];
 char UAtaVersion[XLR_VERSION_LENGTH];
 char DriverVersion[XLR_VERSION_LENGTH];
}S_XLRSWREV, *PS_XLRSWREV;

Purpose

This structure is used by XLRGetVersion to return software/hardware version strings.

Members

• ApiVersion – Version of the StreamStor API library.

• ApiDateCode – Build date of the StreamStor API library.

• FirmwareVersion – FPDP Digital I/O Board firmware version.

• FirmDateCode – Build date of the firmware.

• MonitorVersion – Boot monitor firmware version.

• XbarVersion – Controller logic version.

• AtaVersion – ATA controller version.

• UAtaVersion – Ultra ATA controller version.

• DriverVersion – Driver version.

65

Chapter 5

PCI Integration

67

C H A P T E R 5 : P C I I N T E G R A T I O N

PCI Integration
To allow maximum bandwidth transferring digital data over the PCI bus, the FPDP
Digital I/O Board is designed for direct card-to-card data transfers. Since many data
acquisition cards already perform DMA operations directly to system memory, the
FPDP Digital I/O Board uses this capability for the direct transfer of data. The
software development kit provides the necessary control functions for integration of
the FPDP Digital I/O Board into user applications.

Initialization and Setup
Initialization requires a call to the XLROpen function. This function will lock the
FPDP Digital I/O board for exclusive access and initialize the board. The
initialization routine includes locating the FPDP Digital I/O Board on the PCI bus,
downloading software and initializing required data structures, etc.

PCI Bus Interfacing
Although the PCI bus itself has been designed for card-to-card transactions, most
operating systems have no provisions for this functionality. In addition, most
operating systems do not have provisions for real-time event management, which is
required when transferring data at high bandwidths. For these reasons, there may be
a requirement to modify existing device drivers for the PCI card that is to send data
to the FPDP Digital I/O Board.

The FPDP Digital I/O Board requests a memory mapped window during computer
booting providing a memory space for writing data to be transferred. The default
size of this window is 8MB although you should use the XLRGetBaseRange to
verify this in your application. The StreamStor SDK provides two functions that
return the physical and logical addresses of this window.

The address returned by XLRGetBaseAddr is the physical address that is assigned
to the FPDP Digital I/O Board data window during the boot process. The FPDP
Digital I/O Board PCI interface chip will respond to any memory writes on the PCI
bus in this address range. Note, however, that the FPDP Digital I/O Board does not
utilize the address to determine where to store the data. Any data transferred in the
order they are received. This physical address can be used directly for programming
DMA hardware on the PCI data source device. Various techniques can be used for
programming the DMA hardware but generally you will need to set up a DMA
block transfer that continuously recycles back to the original starting address. If the
DMA hardware supports chaining (scatter/gather) then a looping transfer can be set
up. Consult the documentation for your PCI data acquisition card for more
information.

 CAUTION: The physical address returned by XLRGetBaseAddr cannot be used in
place of a buffer memory address. Use XLRGetWindowAddr instead.

68

C H A P T E R 5 : P C I I N T E G R A T I O N

The address returned by XLRGetWindowAddr is a logical address created by the
operating system to “map” the physical address space of the FPDP Digital I/O
Board into the application memory space. This address can sometimes be used with
software provided by PCI card vendors in place of the address of a memory buffer.
Check with Conduant about your specific environment for more details

Multi-Card Operation
Multiple FPDP Digital I/O Boards can be used in a single system either on the same
bus or on “bridged” PCI buses. If multiple FPDP Digital I/O Boards are installed
into the same bus there will be contention for ownership of the bus during data
transfers and the effective bandwidth will be reduced. If multiple FPDP Digital I/O
Boards are installed on opposite sides of a PCI-PCI bridge than there is no loss in
bandwidth as long as the data capture card is co-located on the same bus as the
FPDP Digital I/O Board it is streaming data to.

Software applications gain exclusive access to an FPDP Digital I/O Board after
calling the XLROpen function. Until the application exits or calls XLRClose, no
other application may connect to that FPDP Digital I/O Board. A single
application can connect to and control multiple FPDP Digital I/O Boards but must
manage the unique handles returned from multiple calls to the XLROpen function.
The index number passed into XLROpen determines which card is to be controlled
by the handle returned. If multiple applications (or multiple instances of the same
application) are used to control FPDP Digital I/O Boards, they must each connect
to a unique FPDP Digital I/O Board. The XLRDeviceFind function returns the
number of FPDP Digital I/O Boards found in the system. The index number
cannot be larger than this number. In most cases, the higher value index indicates a
card that is on a bus or slot further from the main bus. The PCI bus number and
slot number are available from the XLRGetDeviceInfo command. The command
can be used to identify the appropriate card in a multi-card system.

69

Chapter 6

Operation

71

C H A P T E R 6 : O P E R A T I O N

Operation
FPDP Digital I/O Boards have the capability of real time passing of data streams.
This mode of operation is called “pass through.” In pass through mode, the board
is receiving input data over one channel (the PCI bus, the top FPDP port or the
Front FPDP port) and simultaneously outputting that data over a different channel.

In general, to transfer data, your application will follow these steps:

1. Open the FPDP Digital I/O Board (XLROpen).

2. Set the mode of the board to pass through (XLRSetMode).

3. Clear all channel bindings (XLRClearChannels).

4. Bind the input channel (XLRBindInputChannel).

5. If using FPDP on the input channel, select that channel and configure it for
FPDP (XLRSelectChannel and XLRSetFPDPMode).

6. Bind the output channel (XLRBindOutputChannel).

7. If using FPDP on the output channel, select that channel and configure it for
FPDP (XLRSelectChannel and XLRSetFPDPMode).

8. Start the transfer of data into the FPDP Digital I/O Board FIFO (XLRRecord).

9. If transferring data into the FPDP Digital I/O Board FIFO, read data from the
FIFO (XLRGetFIFOLength and XLRReadFifo). See Example 1 in the
Channel Description and Selection chapter of this manual.

10. If transferring data out of the FPDP Digital I/O Board FIFO, initiate data
writes to the board (XLRWrite or XLRWriteData). See Example 2 in the
“Channel Description and Selection” chapter of this manual.

11. When the desired amount of data has been transferred, stop the transfer of data
(XLRStop).

12. Close the FPDP Digital I/O Board (XLRClose).

Details on selecting channels can be found in the “Channel Description and
Selection” of this manual. Details on configuring FPDP options can be found in the
“External Port” chapter of this manual.

Data Transfer
After getting the base address of the data window using XLRGetBaseAddr, it is
used to setup the DMA hardware on the data acquisition card for direct slave writing

72

C H A P T E R 6 : O P E R A T I O N

to the FPDP Digital I/O Board. Because the capacity available on the FPDP Digital
I/O Board is much larger than the 32 bit PCI address scheme (4 GB) will allow, the
system is designed to ignore PCI addressing and assume any data written within the
PCI address range is data to be transferred sequentially. The actual size of the data
window can be found with a call to XLRGetBaseRange (default: 8MB). The PCI
data source card is required to maintain a destination address within this range. This
can easily be accomplished with DMA chaining or other techniques. For example,
the data acquisition card can be programmed to start at the base address, write 64kB,
than start over again at the base address for the next 64kB, etc.

Transferring Data into the FIFO
To start the transfer of data into the FPDP Digial I/O Board FIFO, the user
application must call the XLRRecord function. Once XLR_SUCCESS status has
been returned from this function, the FPDP Digital I/O Board will transfer all data
written to its data address range into the FIFO. This function should be called
BEFORE starting the flow of data to prevent overflow on the data source device.
The user application can periodically sample the device status using
XLRGetDeviceStatus to check for errors that occurred during transfer. Note
that this function call generates PCI traffic and can impact data transfer bandwidth if
used excessively.

Many data acquisition cards have operating modes that allow the capture of a
specific number of data points. Unfortunately, the software does not usually allow
specifying a number larger than a 32-bit integer (4,294,967,295). For this reason it
may be necessary to use the data acquisition card in a “pre-trigger” mode where data
is captured continuously until the trigger and then a specified number of data points
are captured after the trigger. The data acquisition card will then continuously cycle
through its “memory buffer” until receiving the trigger. The FPDP Digital I/O
Board will continuously transfer all of the data.

Note that he data must be output at the same speed as it is coming in. If not, an
overflow condition will be signaled (see Overflow section below) and the data order
of the output stream can no longer be guaranteed.

Ending the Transfer
The FPDP Digital I/O Board will continue to transfer data until the XLRStop
function has been called.

Also, note that a data acquisition system can stop filling the FIFO by simply ceasing
any writes to the FPDP Digital I/O Board data address range. The XLRStop
function should be used to flush all data.

Reading Data from the FIFO
XLRReadFIFO retrieves data from FPDP Digital I/O Board’s FIFO. You pass
XLRReadFIFO a pointer to a buffer to receive the data and the length of data to
read. XLRReadFifo will automatically begin the transfer of data when the FIFO

73

C H A P T E R 6 : O P E R A T I O N

has the requested amount of data in it. If, after five seconds, there is not enough
data in the FIFO to fulfill the request, XLRReadFIFO will time out.

Checking the FIFO length
XLRGetFifoLength tells you how much data is available for reading from the
FIFO. XLRGetFIFOLength is most useful in a case where the last buffer of data
received into the FIFO is less than the requested amount. For example, say you
were transferring buffers of one MG and that the last buffer to be transferred did
not contain a full MG. In this case, XLRReadFifo would time out (since the full
MG was never received). If you then retrieve the error code after the
XLRReadFifo call, you would get the XLR_ERR_EMPTY ("No Data") error. This
indicates that XLRReadFifo was not able to return the requested number of
bytes.

If you get the "No Data" error and want to get the data from the partially filled
buffer, you would:

1. Call XLRStop (to stop the FIFO transfer).

2. Call XLRGetFifoLength to get the length of data in the FIFO.

3. If the length returned by XLRGetFifoLength is not zero, call XLRReadFifo
with the length parameter set to the amount returned from
XLRGetFifoLength.

Ending a FIFO Operation
Stopping data forking or passthru requires the use of two calls to XLRStop. The
first XLRStop will shutdown the receiving hardware, but leave the sending
operation (over the PCI bus) still running. After the first stop, call
XLRGetFIFOLength to find out exactly how much data is left in the FIFO to read.
Next, call XLRReadFIFO (with the amount returned from XLRGetFIFOLength
– make sure the buffer is big enough) to read out the remaining data. Finally, call
XLRStop to take the StreamStor out of record mode.

Overflows
Data pass through operates in a real time fashion. If data is coming in faster than it is
leaving, the FPDP Digital I/O Board’s on-board RAM buffer will eventually fill and
an overflow condition will arise. Overflow conditions are signaled by the Overflow
member of the S_DEVSTATUS structure. This structure is filled by calls to
XLRGetDeviceStatus. See the function reference for more information.

 CAUTION: Once an overflow condition arises, the integrity and order of output
data can no longer be guaranteed. The only way to “recover” from an
overflow situation is to stop and restart the FPDP Digital I/O Board.

74

Chapter 7

External Port

75

C H A P T E R 7 : E X T E R N A L P O R T

External Port
The FPDP Digital I/O Board has connectors and electronics to transfer data into
and out of the FPDP Digital I/O Board. Use of these connectors (or “ external
ports”) offer several advantages:

 freedom from interaction with other devices on an arbitrated bus such as
PCI;

 the reduction or elimination of bus FIFOs that may otherwise be required to
interface with an arbitrated bus;

 full isolation of data path from operating system and computer hardware
facilitates predictable and repeatable behavior;

 better or additional control over timing and other parameters;

 higher bus utilization efficiency due to non-arbitrated nature;

 access to interface signals without risk of crashing host computer;

 higher data rates than the most common PCI buses support; and

 the potential for dual-port operation (simultaneous transfers on both PCI
bus and external ports).

FPDP
Overview

 FPDP is a 32-bit synchronous data bus that allows data to be transferred at high
speeds between devices. Simple and low-cost in its implementation, FPDP supports
the necessary flow controls to manage transfers between devices of different speeds.
Sustained speeds up to 200Mbytes/sec are supported on the FPDP Digital I/O
Board FPDP interface.

In reading the following sections on using this feature, it is important to be familiar
with the American National Standard for Front Panel Data Port Specifications
(ANSI/VITA 17-1998). This manual is intended to clarify FPDP Digital I/O
Board’s operation as it relates to the standard, not to educate one on the standard
itself. For additional information about the standard, other FPDP products and

76

C H A P T E R 7 : E X T E R N A L P O R T

manufacturers, and other technical details regarding FPDP, please visit
www.fpdp.com.

The FPDP Digital I/O Board FPDP interface is designed to meet and exceed the
basic capabilities of FPDP as defined in the FPDP ANSI standard. The following
sections describe:

 any optional FPDP features FPDP Digital I/O Board has implemented;

 any features that FPDP Digital I/O Board has implemented as a superset to
the standard;

 any known deviations form the ANSI standard;

 any clarifications that might otherwise be left open to interpretation; and

 the API functions necessary to configure an external port.

Interface Electronics
Interface electronics and termination values on the FPDP Digital I/O Board are
those recommended by the ANSI standard, though some signals and terminations
can be electronically connected or isolated with crossbar switching devices in order
to support electronic reconfiguration.

Data Formats
The FPDP is a multi-drop bus intended to carry either framed or unframed data.
The FPDP Digital I/O Board currently supports only the unframed data mode.
The SYNC* (Sync Pulse) signal is driven to an inactive state while FPDP Digital I/O
Board is a data transmitter on the FPDP bus.

Contact Conduant for more information on using framed data.

PIO Signals
PIO signals are programmable lines for I/O for user-defined functions. These are
ancillary signals and are not required for the FPDP function. The FPDP Digital I/O
Board currently does not drive or act on received PIO signals. Contact Conduant
for more information on using PIO signals.

Interface Functions
To ready the FPDP Digital I/O Board to transfer data using FPDP, the API routine
XLRBindxxxChannel must be called. The FPDP port’s channel number will
depend on the board type. (For details on channel numbers, see the
XLRSelectChannel function in the Function Reference section of this manual.)
The bind function is called as follows (xxx stands for “Input” or “Output”
depending on intended usage):

 XLRBindxxxChannel (device, 0);

77

C H A P T E R 7 : E X T E R N A L P O R T

After The FPDP Digital I/O Board binds and selects a channel, an API call to
XLRSetFPDPMode is used to configure the port. This command allows you to set
the mode to one of:

 FPDP Transmit Master (FPDP/TM)

 FPDP Transmit (FPDP/T, FPDP Digital I/O Board unique)

 FPDP Receive (FPDP/R)

 FPDP Receive Master (FPDP/RM).

 FPDP Receive Master Clock Master (FPDP/RMCM, FPDP Digital I/O
Board unique)

In FPDP/T mode, the FPDP Digital I/O Board drives the FPDP DATA,
DVALID* (Data Valid), DIR* (direction), and SYNC* (Sync Pulse) signals but uses
the FPDP clock that is driven to the FPDP bus by some other source. In this mode,
the FPDP Digital I/O Board does not provide any termination for signals other
than DATA1. To use this mode properly, the FPDP Digital I/O Board should NOT
be positioned at either end of the FPDP bus. Note also that the maximum useable
frequency in this mode will decay more rapidly as the cumulative distance from the
clock source to the data source to the data destination increases.

In FPDP/RMCM mode, the FPDP Digital I/O Board acts as a Receive Master and
drives the FPDP clock signals on the FPDP bus. In addition, the FPDP Digital I/O
Board terminates the clock signals (PSTROBE, PSTROBE*, and STROB) as would
a traditional FPDP/TM while terminating the remaining signals as would a
FPDP/RM. To use this mode, the FPDP Digital I/O Board should be physically
positioned at an end of the FPDP bus. Note also that the maximum useable
frequency in this mode will decay more rapidly as the cumulative distance from the
clock source to the data source to the data destination increases.

When configuring the FPDP Digital I/O Board for data transfer, it may be desirable
to prevent a transmitter from sending data until the FPDP Digital I/O Board
transfer function is fully enabled. XLRSetFPDPMode can be used to assert the
FPDP NRDY* (Not Ready) signal when the FPDP Digital I/O Board is activated
as an FPDP receiver. NRDY* will remain asserted until the FPDP Digital I/O
Board data transfer is ready to proceed. An example of this is:

XLRSetFPDPMode(device, FPDP_RECVMASTER, SS_OPT_FPDPNRASSERT);

1 FPDP Digital I/O Board always provides series termination on the DATA signals as described in Permission 6.4.1 of the
ANSI specification.

78

C H A P T E R 7 : E X T E R N A L P O R T

PSTROBE/PSTROBE* and STROB Signals
When in FPDP/TM or FPDP/RMCM modes, the FPDP Digital I/O Board will
drive and terminate both the differential clock pair of PSTROBE, PSTROBE* (±
PECL Data Strobe) and the single-ended STROB (Data Strobe) TTL clock. When
in any other mode, the user will select which of the two FPDP clock sources the
FPDP Digital I/O Board should use from the FPDP bus. The clock can be selected
by calling XLRSetFPDPMode with the desired clock option. For example, to enable
the data strobe clock (TTL):

XLRSetFPDPMode(device, FPDP_RECV, SS_OPT_FPDPSTROB);

Refer to the FPDP ANSI standard for recommendations and observations about the
use of these signals.

Operating Frequency Range
In either FPDP/TM or FPDP/RMCM mode, the FPDP Digital I/O Board can be
programmed to synthesize a bus clock in the range from 6 to 50MHz. The FPDP
Digital I/O Board can operate from FPDP clocks supplied by other sources at
frequencies down to DC. Note, however, that the ANSI specification limits the
clock to 20MHz if a receiver is using the STROB (Data Strobe) clock. To program
the clock, use the API function XLRSetPortClock. By default, the clock
frequency is set to 8MHZ. Clock frequencies can be found in the header file
xlrapi.h.

79

Chapter 8

Channel Description and Selection

81

C H A P T E R 8 : C H A N N E L D E S C R I P T I O N A N D S E L E C T I O N

Channel Description and Selection
There are three data paths or channels that can be used to input and output data to
/from the FPDP Digital I/O Board. These channels are: the PCI Bus, the FPDP
top connector, and the FPDP front connector. A single channel or multiple channels
may be selected to receive data. Only one channel at a time can be selected to output
data. This section describes the commands that should be used to correctly set up
the FPDP Digital I/O Board channels for data transfer.

Channel Description
The FPDP Digital I/O Board currently supports three channels: the PCI Bus, the
FPDP top connector, and the FPDP front connector. The PCI Bus is defined as
channel 0, the FPDP top connector is defined as channel 30 and the FPDP front
connector is defined as channel 31. The default channel is the PCI Bus channel 0.
(There are plans to increase the number of PCI channels in the future.)

Selecting an Operating Mode
The FPDP Digital I/O Board operating mode should be set before binding or
selecting a channel. The function XLRSetMode is used to set the operating mode by
passing the Mode parameter of SS_MODE_PASSTHRU to set pass through mode.

Binding and Selecting Channels
The user application must identify the data input and output channels to be used by
the FPDP Digital I/O Board. The process of choosing a channel is called binding a
channel. Binding a channel is analogous to choosing the data path. The function
XLRBindInputChannel is used to bind a channel for input into the FPDP Digital
I/O Board and the function XLRBindOutputChannel is used to bind a channel
for output from FPDP Digital I/O Board. These functions should be called before
data is transferred to or from the FPDP Digital I/O Board is initiated.

XLRClearChannels should be called to clear the default channels prior to calling
XLRBindInputChannel and XLRBindOutputChannel, or these functions may
return an error. The default channel is the PCI Bus channel 0.

The XLRSelectChannel function is also used to select a channel that future
functions will act on. For example, XLRSelectChannel needs to be called to
select the FPDP channel before a call to XLRSetFPDPMode is made.

82

C H A P T E R 8 : C H A N N E L D E S C R I P T I O N A N D S E L E C T I O N

Example 1
/*
 * This example shows how you can use the FPDP Digital I/O Board buffer
 * as a FIFO to read data from an external port. In this example,
 * we use channel 30 (the top FPDP port) as the external port.
 * XLRRecord initiates the transfer of data into the
 * FPDP Digital I/O Board buffer in a first in-first out mode.
 * Then XLRReadFifo is used to retrieve data into system memory
 * from this FIFO buffer.
 */
#include <stdio.h>
#include <stdlib.h>
#include "xlrapi.h"

void errorExit(SSHANDLE xlrDevice);

#ifdef WIN32
#define LONGLONGFMT "%I64u"
#else
#include <unistd.h> // for sleep
#define Sleep(x) (sleep((UINT)(x/1000)))
#define LONGLONGFMT "%llu"
#endif

#define BUFFS_TO_READ 10
#define BUFFSIZE 131072
#define WAIT_LIMIT 5

int main(int argc, char * argv[])
{
 SSHANDLE xlrDevice;
 DWORDLONG fifoLength = 0;
 ULONG lengthToRead = 0;
 ULONG readBuff[249856];
 XLR_RETURN_CODE xlrStatus;
 UINT iterations=0;
 UINT buffCount=0;
 char errorMessage[XLR_ERROR_LENGTH];
 char prtBuf[256];
 char notReadyMsg[256];

 xlrStatus = XLROpen (1, &xlrDevice);
 if (xlrStatus != XLR_SUCCESS) {
 XLRGetErrorMessage(errorMessage, XLRGetLastError());
 printf ("Could not open FPDP Digital I/O Board. Error = %s\n",
 errorMessage);
 exit(1);
 }

 xlrStatus = XLRSetMode(xlrDevice, SS_MODE_PASSTHRU);
 if (xlrStatus != XLR_SUCCESS) {
 printf ("Could not set mode to pass through.\n");
 errorExit(xlrDevice);
 }

83

C H A P T E R 8 : C H A N N E L D E S C R I P T I O N A N D S E L E C T I O N

 xlrStatus = XLRClearChannels(xlrDevice);
 if (xlrStatus != XLR_SUCCESS) {
 printf ("Could not clear channels.\n");
 errorExit(xlrDevice);
 }

 xlrStatus = XLRBindInputChannel (xlrDevice, 30);
 if (xlrStatus != XLR_SUCCESS) {
 printf ("Could not bind input channel to top port.\n");
 errorExit(xlrDevice);
 }

 xlrStatus = XLRSelectChannel (xlrDevice, 30);
 if (xlrStatus != XLR_SUCCESS) {
 printf ("Could not select the top port.\n");
 errorExit(xlrDevice);
 }

 xlrStatus = XLRSetFPDPMode(xlrDevice, SS_FPDP_RECVMASTER,
 SS_OPT_FPDPNRASSERT);
 if (xlrStatus != XLR_SUCCESS) {
 printf ("Could not set top port to Receive Master.\n");
 errorExit(xlrDevice);
 }

 xlrStatus = XLRBindOutputChannel (xlrDevice, 0);
 if (xlrStatus != XLR_SUCCESS) {
 printf ("Could not bind output channel to PCI.\n");
 errorExit(xlrDevice);
 }

 xlrStatus = XLRRecord(xlrDevice, 0, 0);
 if (xlrStatus != XLR_SUCCESS) {
 printf ("XLRRecord failed.\n");
 errorExit(xlrDevice);
 }

 //
 // Data is received by the FPDP Digital I/O Board over the top
 // FPDP port.
 // Read a few buffers worth of data.
 //
 lengthToRead = (ULONG)BUFFSIZE;
 for (buffCount = 0; buffCount < BUFFS_TO_READ; buffCount++) {

 //
 // Get the amount of data that is currently in the fifo. Loop,
 // checking the fifo until it fills. Once it fills, we are
 // ready to start reading from it.
 //
 fifoLength = XLRGetFIFOLength(xlrDevice);

 if (fifoLength < lengthToRead) {
 sprintf (notReadyMsg, " Waiting to fill - Fifo Length = %s\n",
 LONGLONGFMT);
 printf (notReadyMsg, fifoLength);

84

C H A P T E R 8 : C H A N N E L D E S C R I P T I O N A N D S E L E C T I O N

 if (iterations > WAIT_LIMIT) {
 printf ("\tTimed out waiting for fifo to fill.\n");
 break;
 }

 //
 // Sleep 3 seconds, which should be enough time for the fifo
 // length to get updated.
 //
 Sleep(3000);
 iterations++;
 continue;
 }

 if (iterations > WAIT_LIMIT) {
 break;
 }

 sprintf (prtBuf, "Bytes in fifo = %s\n", LONGLONGFMT);
 printf (prtBuf, fifoLength);
 if(XLRReadFifo(xlrDevice, readBuff, lengthToRead, 0)
 != XLR_SUCCESS) {
 printf("\nERROR: Read FIFO failed.\n");
 XLRGetErrorMessage(errorMessage, XLRGetLastError());
 printf ("Exiting because of error: %s\n", errorMessage);
 XLRClose(xlrDevice);
 exit(1);
 }
 }

 // Stop the transfer of data.
 if(XLRStop(xlrDevice) != XLR_SUCCESS) {
 printf("XLRStop failed.\n");
 errorExit(xlrDevice);
 }

 //
 // If the last buffer read was only partially full, read it now.
 //
 fifoLength = XLRGetFIFOLength(xlrDevice);
 if (fifoLength == 0) {
 printf ("No partial buffer needs to be read.\n");
 }
 else {
 //
 // Make sure the requested length is an even multiple of 8 bytes.
 //
 if((fifoLength % 8) != 0) {
 fifoLength = (ULONG)((fifoLength / 8) * 8);
 }

 lengthToRead = (ULONG)fifoLength;

85

C H A P T E R 8 : C H A N N E L D E S C R I P T I O N A N D S E L E C T I O N

 //
 // Read the data from the partially filled FIFO.
 //
 if(XLRReadFifo(xlrDevice, readBuff, lengthToRead, 0)
 != XLR_SUCCESS) {
 printf ("Readfifo of partial buffer failed.\n");
 errorExit(xlrDevice);
 }
 }
 // Take the card out of record mode.
 XLRStop(xlrDevice);

 XLRClose(xlrDevice);
 exit(0);
}

void errorExit(SSHANDLE xlrDevice)
{
 char errorMessage[XLR_ERROR_LENGTH];

 XLRGetErrorMessage(errorMessage, XLRGetLastError());
 printf ("Exiting because of error: %s\n", errorMessage);
 XLRClose(xlrDevice);
 exit(1);
}

86

C H A P T E R 8 : C H A N N E L D E S C R I P T I O N A N D S E L E C T I O N

Example 2
/*
 *
 * This example shows how you can use the FPDP Digital I/O Board
 * buffer as a FIFO to write data to an external port. In this
 * example, we use channel 0(the PCI bus) as input and channel 31
 * the front FPDP port) as output.
 *
 * XLRRecord initiates the system and XLRWrite will
 * put data into the fifo for delivery over channel 31.
 *
 */
#include <stdio.h>
#include <stdlib.h>
#include "xlrapi.h"

void errorExit(SSHANDLE xlrDevice);

int main(int argc, char * argv[])
{
 SSHANDLE xlrDevice;
 XLR_RETURN_CODE xlrStatus;
 char errorMessage[XLR_ERROR_LENGTH];

 xlrStatus = XLROpen (1, &xlrDevice);
 if (xlrStatus != XLR_SUCCESS) {
 XLRGetErrorMessage(errorMessage, XLRGetLastError());
 printf ("Could not open FPDP Digital I/O Board. Error = %s\n",
 errorMessage);
 exit(1);
 }

 xlrStatus = XLRSetMode(xlrDevice, SS_MODE_PASSTHRU);
 if (xlrStatus != XLR_SUCCESS) {
 printf ("Could not set mode to pass through.\n");
 errorExit(xlrDevice);
 }

 xlrStatus = XLRClearChannels(xlrDevice);
 if (xlrStatus != XLR_SUCCESS) {
 printf ("Could not clear channels.\n");
 errorExit(xlrDevice);
 }

 xlrStatus = XLRBindInputChannel (xlrDevice, 0);
 if (xlrStatus != XLR_SUCCESS) {
 printf ("Could not bind input channel to PCI Bus.\n");
 errorExit(xlrDevice);
 }

87

C H A P T E R 8 : C H A N N E L D E S C R I P T I O N A N D S E L E C T I O N

 //
 // Set up to use FPDP to write data to the external port, which is
 // channel 31 - the front FPDP port - in this example.
 //
 xlrStatus = XLRBindOutputChannel (xlrDevice, 31);
 if (xlrStatus != XLR_SUCCESS) {
 printf ("Could not bind output channel to 31 - the front port.\n");
 errorExit(xlrDevice);
 }

 xlrStatus = XLRSelectChannel (xlrDevice, 31);
 if (xlrStatus != XLR_SUCCESS) {
 printf ("Could not select the top port.\n");
 errorExit(xlrDevice);
 }

 //
 // Make channel 31 the transmit-master.
 //
 xlrStatus = XLRSetFPDPMode(xlrDevice, SS_FPDP_XMITMASTER, 0);
 if (xlrStatus != XLR_SUCCESS) {
 printf ("Could not set top port to Transmit Master.\n");
 errorExit(xlrDevice);
 }

 xlrStatus = XLRRecord(xlrDevice, 0, 0);
 if (xlrStatus != XLR_SUCCESS) {
 printf ("XLRRecord failed.\n");
 errorExit(xlrDevice);
 }

 … Call XLRWrite or XLRWrite data to write

 the FIFO’ed data to the output channel …

 if(XLRStop(xlrDevice) != XLR_SUCCESS) {
 printf("XLRStop failed.\n");
 errorExit(xlrDevice);
 }

 XLRClose(xlrDevice);
 exit(0);
}

void errorExit(SSHANDLE xlrDevice)
{
 char errorMessage[XLR_ERROR_LENGTH];

 XLRGetErrorMessage(errorMessage, XLRGetLastError());
 printf ("Exiting because of error: %s\n", errorMessage);
 XLRClose(xlrDevice);
 exit(1);
}

88

Chapter 9

Technical Support

(303) 485-2721

support@conduant.com
www.conduant.com/support

89

http://www.conduant.com/support

C H A P T E R 9 : T E C H N I C A L S U P P O R T

Technical Support
Conduant wants to be sure that your FPDP Digital I/O Board works correctly and
stays working correctly. In the unlikely event, however, that you are unable to get
your new system to work properly, or if a working system ceases to function, we will
do all that we can to get your system back online.

Solving the problem is largely a matter of data collection and steps that must be
taken one at a time. In order for us to better serve you, we ask that you take the time
to perform the following steps prior to calling us. This way, you can provide us with
the most meaningful information possible that will help us solve the problem.

Is the problem one that obviously requires replacement parts due to physical damage to the system? If
yes, then please gather the information described below and report the problem to tech support, by
phone or through the Conduant web site.

Have you confirmed that no cabling has been inadvertently disconnected or damaged while working
around the equipment?

Is the card properly seated in the PCI slot?

Has the software installation been corrupted? Try re-installing software.

Have you checked the Conduant web site for technical bulletins?

Have you checked the Software Update page in the Conduant web site to be sure that your software
is fully up to date? If your software is down level, you may want to update it to determine if this fixes
the problem.

Have you recently installed a new Linux kernel or compiler or a new Windows Service Pack?

If the above steps did not resolve the problem, then please call Technical Support or
submit a request for support via the Conduant web site. To submit a request for
support, go to www.conduant.com, click on “Support” and then on “Submit a
Ticket.”

We will do all that we can to resolve the problem as quickly as possible.

Contacting Technical Support

E-mail: support@conduant.com

Phone: (303) 485-2721

90

http://www.conduant.com/

C H A P T E R 9 : T E C H N I C A L S U P P O R T

Fax: (303) 485-1247

Web: www.conduant.com

Mail: Conduant Corporation
 Technical Support
 1501 South Sunset Street, Suite C
 Longmont, CO 80501

91

Appendix A – Error Codes
If you are experiencing one of these errors and are unable to determine the cause, please contact
Conduant technical support for assistance. Not all error messages will apply to your specific
Conduant product.

Number Error Title Description
2 XLR_ERR_NODEVICE FPDP Digital I/O Board was not

found in system.
3 XLR_ERR_NOINFO Undefined error occurred.
4 XLR_ERR_WDOPEN Cannot open device driver.
5 XLR_ERR_SYSERROR The controller reported a system

error.
6 XLR_ERR_NOXLR No FPDP Digital I/O Boards

located.
7 XLR_ERR_INVALID_CMD An invalid command was received by

the controller.
8 XLR_ERR_HANDLE Invalid handle.
9 XLR_ERR_DMAREADFAIL A DMA read failure occurred.
10 XLR_ERR_SYSTATUS Request is incompatible with

current system status.
11 XLR_ERR_NOCMDSTATUS The command did not complete.

Communication with controller
timed out.

12 XLR_ERR_DMAINCOMPLETE The data transfer timed out and
did not complete.

13 XLR_ERR_APPSTART The controller failed to
initialize RAM application.

14 XLR_ERR_OUTOFMEMORY The DLL failed to allocate
sufficient memory.

15 XLR_ERR_WIN32FAIL A Win32 API failure occurred.
16 XLR_ERR_WRITENOTACTIVE System not ready to receive data.
17 XLR_ERR_WDVERSION Incorrect driver version detected.
18 XLR_ERR_OPENHANDLE Device reference by handle already

opened.
19 XLR_ERR_INVALIDINDEX Invalid card index value.
20 XLR_ERR_DEVICELOCK Could not lock device for

exclusive access.
21 XLR_ERR_DETECTCARD Card configuration invalid.
22 XLR_ERR_BUFLOCK Could not lock user memory buffer.

93

A P P E N D I X A – E R R O R C O D E S

23 XLR_ERR_READFAIL Data read error.
24 XLR_ERR_WRITERAM Firmware write to device memory

failed.
101 XLR_ERR_INVALID_LENGTH An invalid or unaligned transfer

length was requested (must be 64
bit aligned).

102 XLR_ERR_SYSBUSY System is busy. Use XLRStop to
before sending other commands.

103 XLR_ERR_CMDFAIL The controller has failed to
execute the command.

104 XLR_ERR_FILENOTFOUND A required file was not found.
105 XLR_ERR_LOADKEY A required registry key was not

found.
106 XLR_ERR_DLDCHECKSUM A required file is corrupted or

upload failed.
107 XLR_ERR_DRVFAIL A disk drive is failing to

respond.
108 XLR_ERR_NODRIVER Device driver not found or device

already open.
109 XLR_ERR_FIFO_INACTIVE Invalid command, FIFO inactive.
110 XLR_ERR_INVALIDVR An unconfigured or invalid VR was

selected.
111 XLR_ERR_NOTENABLED Optional feature not enabled.
112 XLR_ERR_OUTOFRANGE Request was not in the recorded

data range.
113 XLR_ERR_NOTINFIFO Command valid only in FIFO mode.
114 XLR_ERR_KERNELMEM Unable to allocate kernel memory.
115 XLR_ERR_INTENABLE Unable install device interrupt.
116 XLR_ERR_READCOLLISION Attempt to start multiple reads

from single thread.
117 XLR_ERR_READIDLE Attempted to check status on non-

existent read request.
118 XLR_ERR_FIFODRIVES Current drive configuration

incompatible with FIFO mode.
119 XLR_ERR_FWVERSION Hardware firmware incompatible

with API version.
120 XLR_ERR_OSFAIL A system call failed.
121 XLR_ERR_THREADCREATE Process thread creation failed.
122 XLR_ERR_EXPECTEDDISKS_

MATCH
The number of expected disks
doesn’t equal the actual number of
disks.

123 XLR_BOARDTYPE Unknown board type found.
124 XLR_ERR_FULL Insufficient disk space.
127 XLR_ERR_INVOPT Invalid option value.
142 XLR_ERR_INVALID_

PORTMODE
Port in wrong mode for this
operation.

143 XLR_ERR_NOAPPEND Attempt to delete non-existent
append.

144 XLR_ERR_EMPTY No data.
145 XLR_ERR_INVALID_BANK Invalid bank name specified.

94

A P P E N D I X A – E R R O R C O D E S

146 XLR_ERR_NOTINBANKMODE Command only valid in bank mode.
148 XLR_ERR_DRIVEMODULE_

NOTREADY
Drive module is not ready.

153 XLR_ERR_CANNOT_RECOVER
_DATA

No recovery of data possible.

154 XLR_ERR_NO_RECOVERABLE
_DATA

No recoverable data.

155 XLR_ERR_BAD_DISKSET A disk is missing from a recording
or a disk is mounted that was not
part of the set when the recording
was originally made.

156 XLR_ERR_INVALID_PLAY
_LENGTH

Playback length is beyond the end
of the recording or is not aligned
on an eight-byte boundary.

157 XLR_ERR_INVALID_
WDLICENSE

Invalid driver license.

158 XLR_ERR_WRITE_
PROTECTED

Command invalid on write protected
drive modules.

159 XLR_ERR_MAX_CARDS Maximum number of FPDP Digital I/O
Boards exceeded.

160 XLR_ERR_DRVFAIL_BUS0_
MASTER

Master drive on Bus 0 missing or
failing.

161 XLR_ERR_DRVFAIL_BUS0_
SLAVE

Slave drive on Bus 0 missing or
failing.

162 XLR_ERR_DRVFAIL_BUS1_
MASTER

Master drive on Bus 1 missing or
failing.

163 XLR_ERR_DRVFAIL_BUS1_
SLAVE

Slave drive on Bus 1 missing or
failing.

164 XLR_ERR_DRVFAIL_BUS2_
MASTER

Master drive on Bus 2 missing or
failing.

165 XLR_ERR_DRVFAIL_BUS2_
SLAVE

Slave drive on Bus 2 missing or
failing.

166 XLR_ERR_DRVFAIL_BUS3_
MASTER

Master drive on Bus 3 missing or
failing.

167 XLR_ERR_DRVFAIL_BUS3_
SLAVE

Slave drive on Bus 3 missing or
failing.

168 XLR_ERR_DRVFAIL_BUS4_
MASTER

Master drive on Bus 4 missing or
failing.

169 XLR_ERR_DRVFAIL_BUS4_
SLAVE

Slave drive on Bus 4 missing or
failing.

170 XLR_ERR_DRVFAIL_BUS5_
MASTER

Master drive on Bus 5 missing or
failing.

171 XLR_ERR_DRVFAIL_BUS5_
SLAVE

Slave drive on Bus 5 missing or
failing.

172 XLR_ERR_DRVFAIL_BUS6_
MASTER

Master drive on Bus 6 missing or
failing.

173 XLR_ERR_DRVFAIL_BUS6_
SLAVE

Slave drive on Bus 6 missing or
failing.

174 XLR_ERR_DRVFAIL_BUS7_
MASTER

Master drive on Bus 7 missing or
failing.

95

A P P E N D I X A – E R R O R C O D E S

175 XLR_ERR_DRVFAIL_BUS7_
SLAVE

Slave drive on Bus 7 missing or
failing.

176 XLR_ERR_NOTIN_RECMODE Command only valid when in record
mode.

177 XLR_ERR_EXT_TO_PCI_
OVERFLOW

External port to PCI overflow.

178 XLR_ERR_INVALID_
INTERFACE

Command is not available for the
currently in use interface (PCI
bus, Ethernet, or Serial port).

179 XLR_ERR_INVALID_RETURN
_FORMAT

Data returned from command is
formatted incorrectly (Ethernet
and Serial port interfaces only).

180 XLR_ERR_INVALID_
CHANNEL

The channel being selected or
bound is invalid.

181 XLR_ERR_INVALID_OP_ON_
CHANNEL

Operation is not permitted on this
channel.

182 XLR_ERR_USE_SELECT_
CHANNEL

SS_OPT_FPDPEXTCONN is no longer
valid for selecting the front FPDP
port. XLRSelectChannel must be
used.

183 XLR_ERR_INVALID_SYSTEM
_MODE

Requested mode is invalid.

184 XLR_ERR_TOO_MANY_
CHANNELS

Only 1 input or output channel is
allowed in this mode.

185 XLR_ERR_NO_INPUT_
CHANNELS

Must have at least 1 input
channel.

186 XLR_ERR_NO_OUTPUT_
CHANNELS

Must have at least 1 output
channel.

187 XLR_ERR_NOT_VALID_IN_
MULTI

Operation not valid in
mutlichannel mode.

188 XLR_ERR_PARTITION_SIZE Partition size must be multiple of
page size.

189 XLR_ERR_INVALID_
PARTITION

Invalid partition.

190 XLR_ERR_TOO_MANY_
PARTITIONS

Only 256 partitions are permitted.

191 XLR_ERR_NOT_EMPTY System must be empty for this
command.

192 XLR_ERR_UNKNOWN_DIR_
VERSION

The directory version found is
newer than the current firmware
can handle.

193 XLR_ERR_DATA_INTEGRITY Data integrity check failed.
300 XLR_ERR_PORT_NOT_FOUND Port is unavailable

(Serial/Ethernet interfaces only).
301 XLR_ERR_PORT_ACCESS_

DENIED
Port access is denied
(Serial/Ethernet interfaces only).

302 XLR_ERR_PORT_TIMEOUT Port operation has timed out.
303 XLR_ERR_CONNECT_

REFUSED
Connection refused by target.

96

End of Document

97

	About the FPDP Digital I/O Board
	What you need to get started
	Software Programming Choices
	Unpacking
	FPDP Digital I/O Board

	Components
	Planning Your Installation
	Hardware Installation
	FPDP Digital I/O Board

	Installing the Software
	Introduction
	Software Components
	Device Driver
	Support files
	Windows Uninstall
	Windows Library
	Linux Uninstall
	Linux Configuration/Test Utilities
	Linux Library
	API Functions
	Data Structures

	PCI Integration
	Initialization and Setup
	PCI Bus Interfacing
	Multi-Card Operation

	Operation
	Data Transfer
	Transferring Data into the FIFO
	Ending the Transfer

	Reading Data from the FIFO
	Checking the FIFO length
	Ending a FIFO Operation
	Overflows

	External Port
	FPDP
	Overview
	Interface Electronics
	Data Formats
	PIO Signals
	Interface Functions
	PSTROBE/PSTROBE* and STROB Signals
	Operating Frequency Range

	Channel Description and Selection
	Channel Description
	Selecting an Operating Mode
	Binding and Selecting Channels
	Example 1
	Example 2

	Technical Support
	Contacting Technical Support

