SUBROUTINE ETDA IMPLICIT None C C ETDA adds entries to the table of contents for the Earth tide C module text message, the partial derivatives, and the contributions. C C ETDA Program Interface: C C Common blocks used: INCLUDE 'ccon.i' C INCLUDE 'cuser.i' C 1. Calc_user - Analysis center or Correlator user C C C DATABASE ACCESS - C ACCESS CODES: C 1. 'ETD MESS' - The database access code for the Earth Tide C Module Text Message. C 2. 'ETD CFLG' - The database access code for the Earth Tide C Module flow control message. C 3. 'ETD CONT' - The database access code for the Earth Tide C Module contributions array. C 4. 'ETJMGPAR' - The database access code for the Earth Tide C Module partial derivatives array (1996 IERS C model) as defined in John Gipson's 10 Aug 1998 C memo. C C Subroutine interface: C Caller subroutines: TOCUP C Called subroutines: ADDA, ADDR C C PROGRAMMER - DALE MARKHAM 01/13/77 C PETER DENATALE 06/29/77 C PETER DENATALE 07/12/77 C BRUCE SCHUPLER 10/21/77 C SAVITA GOEL 06/03/87 (CDS FOR A900) C Jim Ryan 89.06.29 Character strings and clean up. C Jim Ryan 89.12.12 UNIX-like database interface C implimented. C David Gordon 94.01.21 Access code 'ETD3 CONT' added, C correction to remove third order tide. C David Gordon 94.04.06 Changed to 'Implicit None' C David Gordon 94.04.07 'ETD3CONT' changed to 'ETD IERS'. C Correction to use in SOLVE to get strict C equivalent of IERS Standards (1992) Solid C Earth Tides. C David Gordon 94.04.27 'ETD3CONT', 'ETDKCONT, and 'ETD2CONT' C Lcodes added. C David Gordon 94.07.12 Changed 'ETHLCONT' to 'ETD2CONT'. C David Gordon 94.08.23 Removed 'ETD IERS' Lcode. Changed C default back to the IERS Standards. Updated C documentation. C David Gordon 98.06.24 Update Lcodes for Calc 9.0. C 'ETD PART' changed to 'ET96PART'. Deletes C added for old calc 8.x contributions. C David Gordon 98.08.27 'ET96PART' changed to 'ETJMGPAR', C in case we need to blame John Gipson. C David Gordon 99.01.06 Added Lcodes 'C82ETCON' and C 'ELASTCON'. Mods for correlator use. C C 1.3 ETDA PROGRAM STRUCTURE C C ADD for Earth Tide module text message. CALL ADDA (1,'ETD MESS','Earth Tide message definition ', * 40, 1, 1 ) C C ADD for Earth Tide module flow control message. CALL ADDA (1,'ETD CFLG','Earth Tide flow control mess def', * 40,1,1) C C ADD for Earth Tide contributions. CALL ADDR (2,'ETD CONT','Earth tide contributions def. ', * 2, 1, 1 ) C IF (Calc_user .eq. 'A') THEN C ADD for Earth Tide partials. CALL ADDR (2,'ETJMGPAR','Gipson Earth Tide Partials ', * 2, 4, 6 ) C CALL ADDR (2,'C82ETCON','Calc8.2 Earth Tide Corrections ', * 2, 1, 1 ) C CALL ADDR (2,'ELASTCON','Elastic Earth Tide Corrections ', * 2, 1, 1 ) C C Deletes for obsolete Calc 8.x contributions CALL DELR (2,'ETD PART') CALL DELR (2,'ETD3CONT') CALL DELR (2,'ETDKCONT') CALL DELR (2,'ETD2CONT') C ENDIF C C Normal conclusion. RETURN END C C****************************************************************************** SUBROUTINE ETDI IMPLICIT None C C ETDI is the Earth Tide Module input and initialization section. C C ETDI Program Interface: C C Common blocks used: C INCLUDE 'ccon.i' C Variables 'from': C 1. KETDC - The module flow control flag. C = 0 => Default, IERS 1996 Earth Tide Model C = 1 => Earth tide model OFF, no corrections computed C 2. KETDD - Module debug output control flag. INCLUDE 'cuser.i' C 1. Calc_user - Analysis center (A) or Correlator (C) user C 2. Use_tide - For correlators only: C = 'TF' => use IERS 1992 tide model + third order C term (tide free crust, pemanent tide C not removed). C = 'RC' => use IERS 1996 tide model (real crust, C permanent tide removed). C C Program specifications: c INTEGER*2 NDO(3), KERR INTEGER*2 LETDM(40), New_ON(40), Old_ON(40), LOFF(40) CHARACTER*40 C_LETDM(2), C_New_ON(2), C_Old_ON(2), C_LOFF(2) EQUIVALENCE (C_LETDM,LETDM), (C_New_ON,New_ON), (C_LOFF,LOFF) EQUIVALENCE (C_Old_ON, Old_ON) C DATA C_LETDM * /'Earth Tide Module - IERS 1996 model, las', * 't modified 98SEP30, David Gordon, GSFC '/ DATA C_New_ON ! KETDC=0 * /'IERS 1996 Earth Tide Model ', * ' '/ DATA C_Old_ON ! KETDC=0 * /'IERS 1992 Earth Tide Model is being used', * ' instead of IERS 1996 Model '/ DATA C_LOFF ! KETDC=1 * /'Earth tide module is turned off. ', * ' '/ C C Database access: C 'PUT' variables: C 1. LETDM(40) - The Earth Tide Module text message. C 2. New_ON(40) - The 1996 IERS Earth tide model. C 3. LOFF(40) - The Earth tides completely turned OFF message. C Access codes: C 1. 'ETD MESS' - The database access code for the Earth Tide C Module text message. C 2. 'ETD DATA' - The database access code for the Earth Tide data. C 3. 'ETD CFLG' - The database access code for the Earth Tide C Module flow control message. C C Subroutine Interface: C Caller subroutines: INITL C Called subroutines: GET4, KILL, PUTA C C Program variables: C 1. KERR - The database error return flag. C 2. NDO(3) - The database return error indices. C C Programmer - DALE MARKHAM 01/13/77 C PETER DENATALE 07/12/77 C BRUCE SCHUPLER 03/24/78 C BRUCE SCHUPLER 11/02/78 C DAVID GORDON 07/31/84 C Jim Ryan 89.06.29 Character strings and clean up comments. C Jim Ryan 89.12.12 UNIX-like database interface C implimented. C David Gordon 93.11.19 New database access messages for IERS C Earth tide computation. C David Gordon 94.01.24 Database access codes modified for C third order Earth tide terms. C David Gordon 94.04.06 Changed to 'Implicit None' C David Gordon 94.04.27 New common block 'tide_stuff'; C XLOVEH_IERS and XLOVEL_IERS defined as h2 and C l2 from database (which will be the IERS C Standards in Calc 8.0). C David Gordon 94.07.12 Database header messsages revised, C message variable names changed. C David Gordon 94.08.08 Love numbers changed, according to C July 28, 1994 letter from Sonny Mathews to C John Gipson. C David Gordon 94.08.09 Love numbers changed again per Sonny C Mathews communication to John Gipson. C David Gordon 94.08.24 Changing back to IERS model as the C default. Messages updated. XLOVEH and XLOVEL C reset to IERS values. XLOVEH_alt and C XLOVEL_alt for Mathews Love numbers. C David Gordon 96.02.07 Changing XLOVEH_alt and XLOVEL_alt C to 0.6081 and .0845 per Feb. 6, 1996 John C Gipson memo. C David Gordon 98.06.24 Extensive mods in Calc 9.0 for C IERS 1996 Earth tide model. Redefined KETDC C options. C David Gordon 98.10.01 Remove common block ETDCM. Remove C GET of 'ETD DATA' - no longer needed. C C ETDI Program Structure. C C PUT Earth tide module text message into database. CALL PUTA ('ETD MESS ', LETDM, 40, 1, 1 ) C C PUT the flow control text message depending on KETDC. IF (KETDC .EQ. 0 .AND. Use_tide .EQ. 'RC') + CALL PUTA('ETD CFLG ',New_ON,40,1,1) IF (KETDC .EQ. 0 .AND. Use_tide .EQ. 'TF') + CALL PUTA('ETD CFLG ',Old_ON,40,1,1) IF (KETDC .EQ. 1) CALL PUTA('ETD CFLG ',LOFF,40,1,1) C C Normal conclusion. RETURN END C C****************************************************************************** SUBROUTINE ETDG ( R2000, SITLAT, SITLON, SUN, TCTOCF, RTTOCF, * USITEP, USITEV, XMOON, EARTH, GAST, STAR, fa, * fad, cent, GEOLAT, KAXIS, TIDEP, TIDEV ) IMPLICIT None C C ETDG is the Solid Earth Tide geometry section. It calculates the C Earth surface crustal displacements and velocities due to Earth C tidal effects at each site using the IERS 1996 Earth tide model. C C References: 1. IERS Technical Note 21, IERS Conventions (1996); C Dennis D. McCarthy (ed.); pages 56-65. C 2. Memo: "Explicit Form of Partials", John M. Gipson, C 8 September 1998. C C ETDG Program Interface: C C Calling sequence: C INPUT VARIABLES: C 1. R2000(3,3,3) - The complete crust fixed to J2000.0 rotation C matrix and its first two CT time derivatives. C (unitless, 1/sec, 1/sec**2) C 2. SITLAT(2) - The geodetic latitude of each site. (RAD) C 3. SITLON(2) - The longitude of each site. (RAD) C 4. SUN(3,2) - The J2000.0 geocentric Sun position and C velocity vectors. (M, M/SEC) C 5. TCTOCF(3,3,2)- The rotation matrix which rotates the C topocentric reference system to the crust C fixed reference system at each site. (unitless) C 6. RTTOCF(3,3,2)- The rotation matrix which rotates the C 'radial-transverse' reference system to the C crust fixed reference system at each site. C 7. USITEP(3,2) - The J2000.0 geocentric site position vectors C uncorrected for Earth tidal effects. (M) C 8. USITEV(3,2) - The J2000.0 geocentric site velocity vectors C uncorrected for Earth tidal effects. (M/SEC) C 9. XMOON(3,2) - The J2000.0 geocentric Moon position and C velocity vectors. (M, M/SEC) C 10. EARTH(3,3) - The solar system barycentric Earth position, C velocity, and acceleration vectors. The first C index runs over the vector components and the C second runs over the time derivatives. C (m, m/sec, m/sec**2) C 11. GAST(2) - The Greenwich Apparent Siderial time and its C CT time derivative. (RAD, RAD/SEC) C 12. STAR(3) - The J2000.0 source unit vector. C 13. fa(5) - The fundamental arguments (arcsec) C 14. fad(5) - The CT time derivatives of the fundamental C arguments. (arcsec/century) C 15. cent - The number of Julian centuries elapsed since the C epoch January 1.5, 2000. (centuries) C 16. GEOLAT(2) - The geocentric latitude at each site. (rad) C 17. KAXIS(2) - THE ANTENNA AXIS TYPES FOR EACH SITE. (UNITLESS) C C OUTPUT VARIABLES: C 1. TIDEP(3,2) - The corrections to the J2000.0 geocentric site C position vectors due to Earth tidal effects at C each site. (M) C 2. TIDEV(3,2) - The corrections to the J2000.0 geocentric site C velocity vectors due to Earth tidal effects at C each site. (M/SEC) C C Common blocks used: C INCLUDE 'ccon.i' C VARIABLES 'FROM': C 1. KETDC - The module flow control flag. C = 0 => Default, IERS 1996 Earth Tide Model plus C contributions for optional use (in SOLVE) C of the IERS 1992 Earth tide + third order C term. C = 1 => Earth tide model OFF, no corrections computed. C 2. KETDD - The debug output flag. C INCLUDE 'cphys.i' C Variables 'from': C 2. GMMOON - The mass of the Moon multiplied by the Universal C gravitational constant. (M**3/SEC**2) C 3. GMSUN - The mass of the Sun multiplied by the Universal C Gravitational constant. (M**3/SEC**2) C 4. GMEARTH - The mass of the Earth multiplied by the Universal C Gravitational constant. (M**3/SEC**2) C 5. REARTH - The equatorial radius of the Earth. (meters) C Real*8 DETDP9(2,4,6) COMMON / ETDCM / DETDP9 C Variables 'to': C 1. DETDP9(2,4,6) - The partial derivatives of the delay and rate C with respect to the site dependent Earth tide C parameters, as defined in John Gipson's Sept. 8, C 1998 memo. C The first index runs over the observing sites. C The second index runs over the two Love numbers AND C their real and imaginary parts. C 1 => h2, Real C 2 => h2, Imaginary C 3 => l2, Real C 4 => h2, Imaginary C The third index runs over the 3 principal bands, C AND the delay and rate. C 1 => semi-diurnal, Delay C 2 => diurnal, Delay C 3 => long period, Delay C 4 => semi-diurnal, Rate C 5 => diurnal, Rate C 6 => long period, Rate C INCLUDE 'cobsn.i' C Variables from: C 1. Nzero - Set to 1 or 2 if station 1 or 2 is at the geocenter, C otherwise equals zero. For correlator usage. C COMMON /CMATH/ PI, TWOPI, HALFPI, CONVD, CONVDS, CONVHS, SECDAY Real*8 PI, TWOPI, HALFPI, CONVD, CONVDS, CONVHS, SECDAY C C Variables "From": C 1. PI - THE MATHEMATICAL CONSTANT PI (UNITLESS) C 2. TWOPI - PI * 2.0D0 (UNITLESS) C 3. HALFPI - PI / 2.0D0 (UNITLESS) C 4. CONVD - THE CONVERSION FACTOR FROM DEGREES TO RADIANS (RAD/DEG) C 5. CONVDS - THE CONVERSION FACTOR FROM ARCSECONDS TO RADIANS C (RAD/ARCSECOND) C 6. CONVHS - THE CONVERSION FACTOR FROM TIME SECONDS TO RADIANS C (RADIANS / TIME SECOND) C 7. SECDAY - THE NUMBER OF TIME SECONDS PER DAY (SECONDS / DAY) C INCLUDE 'cuser.i' C 1. Calc_user - Analysis center (A) or Correlator (C) user C 2. Use_tide - For correlators only: C = 'TF' => use IERS 1992 tide model + third order C term (tide free crust, pemanent tide C not removed). C = 'RC' => use IERS 1996 tide model (real crust, C permanent tide removed). C C Program specifications: C Real*8 delta_r(3,2), ddelta_r(3,2), delta_r2(3,2), * ddelta_r2(3,2), delta_r3(3,2), ddelta_r3(3,2), * delta_r2_dh2(3,2), ddelta_r2_dh2(3,2), * delta_r2_dl2(3,2), ddelta_r2_dl2(3,2) Real*8 R2000(3,3,3), SITLAT(2), SUN(3,2), TCTOCF(3,3,2), * TIDEP(3,2), TIDEV(3,2), USITEP(3,2), USITEV(3,2), * XMOON(3,2), SITLON(2), GAST(2), STAR(3), EARTH(3,3), * fa(5), fad(5), cent, RTTOCF(3,3,2), GEOLAT(2) Integer*2 KAXIS(2) Real*8 SunLat, SunLon, MoonLat, MoonLon, h2_R_s(3,2), * h2_I_s(3,2), h2_R_d(3,2), h2_I_d(3,2), h2_R_l(3,2), * h2_I_l(3,2), l2_R_s(3,2), l2_I_s(3,2), l2_R_d(3,2), * l2_I_d(3,2), l2_R_l(3,2), l2_I_l(3,2), xsign, * l2_R_s2000(3,2), l2_I_s2000(3,2), l2_R_d2000(3,2), * l2_I_d2000(3,2), l2_R_l2000(3,2), l2_I_l2000(3,2), CFtmp(3) Real*8 dSunLat, dSunLon, dMoonLat, dMoonLon, dh2_R_s(3,2), * dh2_I_s(3,2), dh2_R_d(3,2), dh2_I_d(3,2), dh2_R_l(3,2), * dh2_I_l(3,2), dl2_R_s(3,2), dl2_I_s(3,2), dl2_R_d(3,2), * dl2_I_d(3,2), dl2_R_l(3,2), dl2_I_l(3,2), * dl2_R_s2000(3,2), dl2_I_s2000(3,2), dl2_R_d2000(3,2), * dl2_I_d2000(3,2), dl2_R_l2000(3,2), dl2_I_l2000(3,2), * vect1(3), vect2(3), vect3(3) Real*8 Vecmg, Dotp Real*8 r_vec(3),dr_vec(3), r_mag,dr_mag, r_hat(3),dr_hat(3), * Rmoon(3),dRmoon(3), Rmoon_mag, dRmoon_mag, * Rmoon_hat(3),dRmoon_hat(3), Rmoon_dot_r,dRmoon_dot_r, * Rsun(3),dRsun(3), Rsun_mag,dRsun_mag, * Rsun_hat(3),dRsun_hat(3), Rsun_dot_r,dRsun_dot_r, * term1M,dterm1M, term2,dterm2, term3M,dterm3M, * term4M,dterm4M, term1M_2,dterm1M_2, term1S,dterm1S, * term3S,dterm3S, term4S,dterm4S, term1S_2,dterm1S_2 Real*8 term5M, dterm5M, term5S, dterm5S Integer*4 c1, c2 Real*8 GSL2(2), Phi(2), h_sub_2, l_sub_2, h_sub_3, l_sub_3, * term01M, dterm01M, term02, dterm02, term03M, dterm03M, * term04M, dterm04M, term05M, dterm05M, * PHImoon, dPHImoon, Theta_moon, dTheta_moon, * RA_moon, dRA_moon, Lamda_moon, dLamda_moon, * P12_moon, P12_moon_a, P22_moon, P22_moon_a, * dP12_moon, dP12_moon_a, dP22_moon, dP22_moon_a, * PHIsun, dPHIsun, Theta_sun, dTheta_sun, * RA_sun, dRA_sun, Lamda_sun, dLamda_sun, * P12_sun, P12_sun_a, P22_sun, P22_sun_a, * dP12_sun, dP12_sun_a, dP22_sun, dP22_sun_a, * TR2000(3,3,2), CFRmoon(3), CFRsun(3), dCFRmoon(3), * dCFRsun(3), CFM1(3), CFM2(3), CFRmoon_mag, dCFRmoon_mag, * CFRsun_mag, dCFRsun_mag Real*8 topo11(3,2), dtopo11(3,2), CF11(3,2), dCF11(3,2), * topo12(3,2), dtopo12(3,2), CF12(3,2), dCF12(3,2), * topo13(3,2), dtopo13(3,2), CF13(3,2), dCF13(3,2), * topo14(3,2), dtopo14(3,2), CF14(3,2), dCF14(3,2), * topo15(3,2), dtopo15(3,2), CF15(3,2), dCF15(3,2), * topo16(3,2), dtopo16(3,2), CF16(3,2), dCF16(3,2), * topo17(3,2), dtopo17(3,2), CF17(3,2), dCF17(3,2), * topo17el(3,2), CF17el(3,2), del17el(3,2), * vec1(3), vec2(3), T17A, T17B Real*8 delta11(3,2), ddelta11(3,2), delta12(3,2), ddelta12(3,2), * delta13(3,2), ddelta13(3,2), delta14(3,2), ddelta14(3,2), * delta15(3,2), ddelta15(3,2), delta16(3,2), ddelta16(3,2), * delta17(3,2), ddelta17(3,2), * l1_11, l1_12, h_I13, l_I13, h_I14, l_I14, * theta15(11), dtheta15(11), theta16(5), dtheta16(5) Real*8 CPhi, SPhi, C2Phi, S2Phi, CsqPhi, SsqPhi, CLamMoon, * SLamMoon, CLLMoon, SLLMoon, C2LLMoon, S2LLMoon, dCLamMoon, * dSLamMoon, dCLLMoon, dSLLMoon, dC2LLMoon, dS2LLMoon, * CPhiMoon, SPhiMoon, CsqPhiMoon, SsqPhiMoon, C2PhiMoon, * S2PhiMoon, dCPhiMoon, dSPhiMoon, dCsqPhiMoon, dSsqPhiMoon, * dC2PhiMoon, dS2PhiMoon, CLamSun, SLamSun, CLLSun, SLLSun, * C2LLSun, S2LLSun, dCLamSun, dSLamSun, dCLLSun, dSLLSun, * dC2LLSun, dS2LLSun, CPhiSun, SPhiSun, CsqPhiSun, * SsqPhiSun, C2PhiSun, S2PhiSun, dCPhiSun, dSPhiSun, * dCsqPhiSun, dSsqPhiSun, dC2PhiSun, dS2PhiSun, * C2LamMoon, S2LamMoon, C2LamSun, S2LamSun, * dC2LamMoon, dS2LamMoon, dC2LamSun, dS2LamSun Real*8 TD82P(3,2), TD82V(3,2), ELASP(3,2), ELASV(3,2) Common /TIDE8/ TD82P, TD82V, ELASP, ELASV C Data h_sub_3 /0.292D0/ Data l_sub_3 /0.015D0/ C C Real*4 Dood_arg(10,11), Table73a(10,11), Table73b(12,5) Real*4 Table73a(10,11), Table73b(12,5) Integer*4 itide, ll, kk, k, k8, L, J, I, jf C Real*8 fund_arg(6), arg, dfund_arg(6), d_arg Real*8 geo_lat(2) C Data Table73a / * 1., 0., 2., 0., 2., -1., -0.11, -0.01, -0.09, 0.00, * 0., 0., 2., 0., 1., -1., -0.12, -0.01, -0.10, 0.00, * 0., 0., 2., 0., 2., -1., -0.63, -0.04, -0.53, 0.02, * 1., 0., 0., 0., 0., -1., 0.07, 0.00, 0.06, 0.00, * 0., 1., 2., -2., 2., -1., -0.06, 0.00, -0.05, 0.00, * 0., 0., 2., -2., 2., -1., -1.29, 0.05, -1.23, 0.07, * 0., 0., 0., 0., -1., -1., -0.23, 0.01, -0.22, 0.01, * 0., 0., 0., 0., 0., -1., 12.25, -0.65, 12.04, -0.72, * 0., 0., 0., 0., 1., -1., 1.77, -0.09, 1.74, -0.10, * 0., -1., 0., 0., 0., -1., -0.51, 0.03, -0.50, 0.03, * 0., 0., -2., 2., -2., -1., -0.11, 0.01, -0.11, 0.01 / C Data Table73b / * 0., 0., 0., 0., 1., 0., -0.05, 0.00, 0.47, 0.23, * 0.16, 0.07, * 0., 0., -2., 2., -2., 0., 0.05, 0.00, -0.20, -0.12, * -0.11, -0.05, * -1., 0., 0., 0., 0., 0., 0.06, 0.00, -0.11, -0.08, * -0.09, -0.04, * 0., 0., -2., 0., -2., 0., 0.12, 0.00, -0.13, -0.11, * -0.15, -0.07, * 0., 0., -2., 0., -1., 0., 0.05, 0.00, -0.05, -0.05, * -0.06, -0.03 / C C External input/output - Possible debug output. C C Subroutine Interface: C Caller subroutines: DRIVG C Called subroutines: DCOS, DOTP, ROTATE, VECAD, VECRT, VECMG, VECSB C C Constants used: GMMOON, GMSUN, GMEARTH, REARTH C C Program variables: C C 1. Rmoon(3), Rsun(3), dRmoon(3), dRsun(3) - Geocentric position and C velocity vectors of the Moon and the Sun. (m, m, m/s, m/s) C 2. Rmoon_mag, dRmoon_mag, Rsun_mag, dRsun_mag - Magnitude of geocentric C vectors and their derivatives. (m, m, m/s, m/s) C 3. Rmoon_hat(3), Rsun_hat(3), dRmoon_hat(3), dRsun_hat(3) - Geocentric C unit vectors and their derivatives. (unitless) C 4. r_vec(3), dr_vec(3) - Geocentric position and velocity of current C site. (m, m/s) C 5. r_mag, dr_mag - Magnitude of geocentric site vector and its C derivative. (m, m/s) C 6. r_hat(3), dr_hat(3) - Geocentric unit vector of current site and C its derivative. (unitless) C 7. Rmoon_dot_r, dRmoon_dot_r, Rsun_dot_r, dRsun_dot_r - Dot products of C Moon/Sun unit vectors with site unit vector and their derivatives. C 8. term---, dterm--- - terms used for the second and third order tide C and partials computations, too numerous to mention individually. C 9. delta_r2(3,2)-The second order tidal displacement at each site. First C index is X,Y,Z. Second index runs over sites. (m) C 10. ddelta_r2(3,2)-The second order tidal velocity at each site. First C index is X,Y,Z. Second index runs over sites. (m/s) C 11. fund_arg(6) - The five fundamental arguments (fa(5)) C converted to radians and the Greenwich apparent siderial time C plus PI. (radians) C 12. dfund_arg(6) - Time derivatives of above. (radians/sec) C 13. geo_lat(2) - The geocentric latitude of each site. (RAD) C 14. SunLat - The J2000 geocentric latitude (declination) of the Sun. C 15. MoonLat - The J2000 geocentric latitude (declination) of the Moon. C 16. SunLon - The J2000 geocentric longitude (RA) of the Sun. C 17. MoonLon - The J2000 geocentric longitude (RA) of the Moon. C C 1. delta_r(3,2) - Sum of C First index runs over X,Y,Z; second runs over sites. (meters) C 2. ddelta_r(3,2) - Time derivative of above, i.e., IERS tidal velocities. C First index runs over X,Y,Z; second runs over sites. (m/sec) C 5. delta_r3(3,2) - The third order tidal displacement at each site, C from the IERS 1996 model. First index runs over X,Y,Z; C second runs over sites. (meters) C 6. ddelta_r3(3,2) - Time derivative of above, third order tidal velocity. C First index runs over X,Y,Z; second runs over sites. (m/sec) C C 4.2.9 PROGRAMMER - C DALE MARKHAM 01/13/77 C PETER DENATALE 07/12/77 C BRUCE SCHUPLER 03/24/78 C BRUCE SCHUPLER 11/02/78 C BRUCE SCHUPLER 01/14/80 C DAVID GORDON 07/20/84 C Jim Ryan 89.06.29 Character strings and clean up. C Jim Ryan 89:10:05 CPHYS common made an include file. C David Gordon 93Oct/Nov. Added IERS tide computation, C restructured subroutine, new KETDC options. C David Gordon 94.01.24 Third order tide components added. C David Gordon 94.01.27 Partials with respect to lag angle C added. C David Gordon 94.04.05 Coding added to compute the six C frequency dependent Love number correction C vertical terms (K1, O1, P1, Psi, and 2 C unnamed terms). New terms will replace old C K1 term in IERS tide computation (default). C K1 left in old tide option. C David Gordon 94.04.06 Changed to 'Implicit None' C David Gordon 94.04.27 New common block 'tide_stuff'. C David Gordon 94.04.28 Term for change in Love/Shida #'s C (r2_IERS) added. Separate terms kept for C all non "pure" IERS contributions. C David Gordon 94.05.23 Removed second dimensioning of XK1V. C David Gordon 94.07.11 Changed absolute value of geocentric C site radius to Earth's equatorial radius C (REARTH) in second and third order tide C computation. Added change to second order C term to IERS-restorer variable. Reference C is Sonny Mathews via John Gipson. C David Gordon 94.08.09 Changed Love numbers for C Gipson/Mathews tides. Changed amplitudes for C O1, P1, K1, Psi, ... terms. John Gipson C Aug. 9, 1994 memo (reference #7 above). C David Gordon 94.08.25 Changed default back to IERS C Standards. Three correction terms kept to C convert to Gipson/Mathews Earth tide model. C David Gordon 96.01.10 Changing geodetic latitude to C geocentric latitude for computation of K1 C and K1-plus tide corrections. C David Gordon 96.02.07 Changing 2 arguments (signs C reversed) in Tide_arg and 3 amplitudes in C Tide_val. See 96Feb06 J. Gipson memo. C David Gordon 98.05.06 Old (Calc 5/6/7) computations removed. C Calc 8 computations moved into subroutine ETDC8. C Calc 9 (1996 IERS Conventions) computations coded C and put into subroutine ETDC9. C David Gordon 98.06.24 Subroutine ETDC8 deleted. Subroutine ETDG C reduced to a driver for ETDC9. C David Gordon 98.07.29 Added 'Include cobsn.i' with C variable Nzero, and code to skip topocentric C computations for a station at the geocenter. C David Gordon 98.07.31 Subroutine ETDC9 folded back in to ETDG. C Mods to set tides to zero for a geocenter station. C David Gordon 98.09.30 Finished coding Earth tide partials based C on John Gipson's memo of 8 Sept. 1998. Restructured C and simplifed earlier tide components and time C derivatives. Removed all but DETDP9 from common C block ETDCM. Removed the block data subprogram. C David Gordon 98.12.29 Corrected errors in Table73b, found by C John Gipson. C David Gordon 99.01.06 Added call to subroutine ETDC8 to compute C earlier Calc 8 Earth tide. Skipping of partials C for correlator usage. C David Gordon 99.10.01 Added removal of permanent tide. Adding C 'Use_Tide' parameter to allow using the Calc 8 C tide model at the correlators. C James M Anderson 12.02.23 Update for spacecraft C C**************************************************************************** C ETDG PROGRAM STRUCTURE C**************************************************************************** C C Check KETDC to determine if the Earth tide module is to be turned OFF. IF (KETDC .eq. 1) Then DO 220 L = 1,2 DO 210 I = 1,3 TIDEP(I,L) = 0.D0 TIDEV(I,L) = 0.D0 delta_r(I,L) = TIDEP(I,L) ddelta_r(I,L) = TIDEV(I,L) 210 CONTINUE 220 CONTINUE RETURN ENDIF C C Check for which tide model to use at the correlators: If (Calc_user .eq. 'C' .and. Use_tide .ne. 'RC') Then Go to 1500 Endif C C**************************************************************************** C The Earth tide geometry for site #1 and site #2 are calculated C separately by running twice through a loop. C The program uses the IERS Conventions (1996) model. C C C Preliminary Sun and Moon (station independent) quantities: C C Vectors from the geocenter to the Moon and the Sun and their derivatives Do kk=1,3 Rmoon(kk) = XMOON(kk,1) dRmoon(kk) = XMOON(kk,2) Rsun(kk) = SUN(kk,1) dRsun(kk) = SUN(kk,2) Enddo C C Magnitude of vector from geocenter to the Moon and its derivative Rmoon_mag = vecmg(Rmoon) dRmoon_mag = Dotp(Rmoon,dRmoon)/Rmoon_mag C C Magnitude of vector from geocenter to the Sun and its derivative Rsun_mag = vecmg(Rsun) dRsun_mag = Dotp(Rsun,dRsun)/Rsun_mag C C Unit vectors from geocenter to the Moon and Sun and their derivatives call vunit(Rmoon,Rmoon_hat) call vunit(Rsun,Rsun_hat) do kk=1,3 dRmoon_hat(kk) = dRmoon(kk)/Rmoon_mag - Rmoon(kk)*dRmoon_mag / * Rmoon_mag**2 dRsun_hat(kk) = dRsun(kk)/Rsun_mag - Rsun(kk)*dRsun_mag / * Rsun_mag**2 enddo C C Get Crust-fixed latitude and longitude of the Sun and the Moon. C Rotate Moon and Sun vectors from the J2000 coordinate system to the C geocentric crust-fixed system. C First compute the rotation matrix which rotates from the J2000.0 C reference system to the geocentric crust fixed system, and its C time derivative. CALL MTRAN ( R2000(1,1,1), TR2000(1,1,1) ) CALL MTRAN ( R2000(1,1,2), TR2000(1,1,2) ) C Then rotate the Moon and Sun unit vectors to the crust fixed system. CALL VECRT ( TR2000(1,1,1),Rmoon(1),CFRmoon(1)) CALL VECRT ( TR2000(1,1,1),Rsun(1),CFRsun(1)) C And find their derivatives in the crust fixed system CALL VECRT ( TR2000(1,1,1),dRmoon,CFM1) CALL VECRT ( TR2000(1,1,2), Rmoon,CFM2) CALL VECAD ( CFM1, CFM2, dCFRmoon ) CALL VECRT ( TR2000(1,1,1),dRsun,CFM1) CALL VECRT ( TR2000(1,1,2), Rsun,CFM2) CALL VECAD ( CFM1, CFM2, dCFRsun ) C CFRmoon_mag = VECMG( CFRmoon ) dCFRmoon_mag = DOTP( CFRmoon, dCFRmoon ) / CFRmoon_mag C CFRsun_mag = VECMG( CFRsun ) dCFRsun_mag = DOTP( CFRsun, dCFRsun ) / CFRsun_mag C C Find body-fixed geocentric latitude of Sun/moon PHImoon = DASIN( CFRmoon(3)/CFRmoon_mag ) dPHImoon = ( dCFRmoon(3)/CFRmoon_mag - * CFRmoon(3)*dCFRmoon_mag/CFRmoon_mag**2 ) / * DSQRT( 1.D0 - (CFRmoon(3)/CFRmoon_mag)**2 ) PHIsun = DASIN( CFRsun(3)/CFRsun_mag ) dPHIsun = ( dCFRsun(3)/CFRsun_mag - * CFRsun(3)*dCFRsun_mag/CFRsun_mag**2 ) / * DSQRT( 1.D0 - (CFRsun(3)/CFRsun_mag)**2 ) C C Find body-fixed East longitude (from Greenwich) of moon Lamda_moon = DATAN2( CFRmoon(2),CFRmoon(1) ) dLamda_moon = 1.D0 / ( 1.D0 + (CFRmoon(2)/CFRmoon(1))**2 ) * * ( dCFRmoon(2)/CFRmoon(1) - * CFRmoon(2)*dCFRmoon(1)/CFRmoon(1)**2 ) C C Find body-fixed East longitude (from Greenwich) of Sun Lamda_sun = DATAN2( CFRsun(2),CFRsun(1) ) dLamda_sun = 1.D0 / ( 1.D0 + (CFRsun(2)/CFRsun(1))**2 ) * * ( dCFRsun(2)/CFRsun(1) - * CFRsun(2)*dCFRsun(1)/CFRsun(1)**2 ) C C Compute heavily used sine and cosine terms and derivatives of Sun and C Moon crust-fixed latitude and longitude C CPhiMoon = DCOS(PhiMoon) SPhiMoon = DSIN(PhiMoon) dCPhiMoon = -SPhiMoon * dPhiMoon dSPhiMoon = CPhiMoon * dPhiMoon C CsqPhiMoon = CPhiMoon * CPhiMoon SsqPhiMoon = SPhiMoon * SPhiMoon dCsqPhiMoon = 2.D0 * CPhiMoon * dCPhiMoon dSsqPhiMoon = 2.D0 * SPhiMoon * dSPhiMoon C C2PhiMoon = DCOS(2.D0*PhiMoon) S2PhiMoon = DSIN(2.D0*PhiMoon) dC2PhiMoon = -2.D0 * S2PhiMoon * dPhiMoon dS2PhiMoon = 2.D0 * C2PhiMoon * dPhiMoon C CLamMoon = DCOS(Lamda_Moon) SLamMoon = DSIN(Lamda_Moon) dCLamMoon = -SLamMoon * dLamda_Moon dSLamMoon = CLamMoon * dLamda_Moon C C2LamMoon = DCOS(2.D0 * Lamda_Moon) S2LamMoon = DSIN(2.D0 * Lamda_Moon) dC2LamMoon = -S2LamMoon * 2.D0 * dLamda_Moon dS2LamMoon = C2LamMoon * 2.D0 * dLamda_Moon C CPhiSun = DCOS(PhiSun ) SPhiSun = DSIN(PhiSun ) dCPhiSun = -SPhiSun * dPhiSun dSPhiSun = CPhiSun * dPhiSun C CsqPhiSun = CPhiSun * CPhiSun SsqPhiSun = SPhiSun * SPhiSun dCsqPhiSun = 2.D0 * CPhiSun * dCPhiSun dSsqPhiSun = 2.D0 * SPhiSun * dSPhiSun C C2PhiSun = DCOS(2.D0*PhiSun ) S2PhiSun = DSIN(2.D0*PhiSun ) dC2PhiSun = -2.D0 * S2PhiSun * dPhiSun dS2PhiSun = 2.D0 * C2PhiSun * dPhiSun C CLamSun = DCOS(Lamda_Sun ) SLamSun = DSIN(Lamda_Sun ) dCLamSun = -SLamSun * dLamda_Sun dSLamSun = CLamSun * dLamda_Sun C C2LamSun = DCOS(2.D0 * Lamda_Sun) S2LamSun = DSIN(2.D0 * Lamda_Sun) dC2LamSun = -S2LamSun * 2.D0 * dLamda_Sun dS2LamSun = C2LamSun * 2.D0 * dLamda_Sun C If(KETDD .ne. 0) Then write(6,'(/,10x,"Debug from Subroutine ETDC9: KETDC =",I2)')KETDC write(6,8)' Rmoon ', Rmoon write(6,8)' dRmoon ', dRmoon write(6,8)' Rmoon_mag, dRmoon_mag ', Rmoon_mag, dRmoon_mag write(6,8)' Rmoon_hat ', Rmoon_hat write(6,8)' dRmoon_hat ', dRmoon_hat write(6,8)' Rsun ', Rsun write(6,8)' dRsun ', dRsun write(6,8)' Rsun_mag, dRsun_mag ', Rsun_mag, dRsun_mag write(6,8)' Rsun_hat ', Rsun_hat write(6,8)' dRsun_hat ', dRsun_hat write(6,8)' CFRmoon ', CFRmoon write(6,8)' CFRsun ', CFRsun write(6,8)' CFM1moon ', CFM1 write(6,8)' CFM2moon ', CFM2 write(6,8)' dCFRmoon ', dCFRmoon write(6,8)' CFM1sun ', CFM1 write(6,8)' CFM2sun ', CFM2 write(6,8)' dCFRsun ', dCFRsun write(6,8)' CFRmoon_mag, dCFRmoon_mag ',CFRmoon_mag,dCFRmoon_mag write(6,8)' CFRsun_mag, dCFRsun_mag ',CFRsun_mag,dCFRsun_mag write(6,8)' PHImoon, dPHImoon ', PHImoon/CONVD, dPHImoon/CONVD write(6,8)' Lamda_moon, dLamda_moon ', Lamda_moon/CONVD, * dLamda_moon/CONVD write(6,8)' PHIsun, dPHIsun ', PHIsun/CONVD, dPHIsun/CONVD write(6,8)' Lamda_sun, dLamda_sun ', Lamda_sun/CONVD, * dLamda_sun/CONVD write(6,8)' CPhiMoon, SPhiMoon ', CPhiMoon, dCPhiMoon, * SPhiMoon, dSPhiMoon write(6,8)' CsqPhiMoon, SsqPhiMoon ', CsqPhiMoon, dCsqPhiMoon, * SsqPhiMoon, dSsqPhiMoon write(6,8)' C2PhiMoon, S2PhiMoon ', C2PhiMoon, dC2PhiMoon, * S2PhiMoon, dS2PhiMoon write(6,8)' CLamMoon, SLamMoon ', CLamMoon, dCLamMoon, * SLamMoon, dSLamMoon write(6,8)' C2LamMoon, S2LamMoon ', C2LamMoon, dC2LamMoon, * S2LamMoon, dS2LamMoon write(6,8)' CPhiSun, SPhiSun ', CPhiSun, dCPhiSun, * SPhiSun, dSPhiSun write(6,8)' CsqPhiSun, SsqPhiSun ', CsqPhiSun, dCsqPhiSun, * SsqPhiSun, dSsqPhiSun write(6,8)' C2PhiSun, S2PhiSun ', C2PhiSun, dC2PhiSun, * S2PhiSun, dS2PhiSun write(6,8)' CLamSun, SLamSun ', CLamSun, dCLamSun, * SLamSun, dSLamSun write(6,8)' C2LamSun, S2LamSun ', C2LamSun, dC2LamSun, * S2LamSun, dS2LamSun write(6,8)' GMMOON ',GMMOON write(6,8)' GMSUN ',GMSUN write(6,8)' GMEARTH ',GMEARTH write(6,8)' REARTH ',REARTH write(6,8)' fund_arg ', fund_arg write(6,8)' dfund_arg ', dfund_arg Endif C C****************************************************************** C Loop through twice for sites 1 and 2 C DO k=1,2 !Loop over sites C C First check for geocenter station. There should be no tidal effects at the C geocenter. Also for spacecraft there are no tidal effects to apply. IF ((Nzero .eq. k) .OR. (KAXIS(K).EQ. 6)) THEN C print *,'ETDG: Zero site found ' Do kk=1,3 TIDEP(kk,k) = 0.D0 TIDEV(kk,k) = 0.D0 Enddo do kk=1,4 do k8 = 1,6 DETDP9(k,kk,k8) = 0.D0 enddo enddo GO TO 100 ENDIF C C Vector from geocenter to site #k and its derivative do kk = 1,3 r_vec(kk) = USITEP(kk,k) dr_vec(kk) = USITEV(kk,k) enddo C Magnitude of vector from geocenter to site #k (r_vec) and its derivative C (Derivative should be zero) r_mag = vecmg(r_vec) C dr_mag = Dotp(r_vec,dr_vec)/r_mag dr_mag = 0.D0 C Unit vector from geocenter to site # k and its derivative call vunit(r_vec,r_hat) do kk=1,3 dr_hat(kk) = dr_vec(kk)/r_mag - r_vec(kk)*dr_mag/r_mag**2 enddo C C Dot product of unit Moon vector with unit site vector and its derivative Rmoon_dot_r = Dotp(Rmoon_hat,r_hat) dRmoon_dot_r = Dotp(Rmoon_hat,dr_hat) + * Dotp(dRmoon_hat,r_hat) C C Dot product of unit Sun vector with unit site vector and its derivative Rsun_dot_r = Dotp(Rsun_hat,r_hat) dRsun_dot_r = Dotp(Rsun_hat,dr_hat) + * Dotp(dRsun_hat,r_hat) C C Geocentric latitude: Phi(k) = GEOLAT(k) C C-------------------------------------------------------------------------- C Compute heavily used sine and cosine terms and derivatives C CLLMoon = DCOS(SITLON(k) - Lamda_moon) SLLMoon = DSIN(SITLON(k) - Lamda_moon) dCLLMoon = -SLLMoon * -dLamda_moon dSLLMoon = CLLMoon * -dLamda_moon C C2LLMoon = DCOS(2.D0 * (SITLON(k) - Lamda_moon)) S2LLMoon = DSIN(2.D0 * (SITLON(k) - Lamda_moon)) dC2LLMoon = -S2LLMoon * 2.D0 * -dLamda_moon dS2LLMoon = C2LLMoon * 2.D0 * -dLamda_moon C CLLSun = DCOS(SITLON(k) - Lamda_sun ) SLLSun = DSIN(SITLON(k) - Lamda_sun ) dCLLSun = -SLLSun * -dLamda_sun dSLLSun = CLLSun * -dLamda_sun C C2LLSun = DCOS(2.D0 * (SITLON(k) - Lamda_sun )) S2LLSun = DSIN(2.D0 * (SITLON(k) - Lamda_sun )) dC2LLSun = -S2LLSun * 2.D0 * -dLamda_sun dS2LLSun = C2LLSun * 2.D0 * -dLamda_sun C C Constant (nearly) quantities CPhi = DCOS(Phi(k)) SPhi = DSIN(Phi(k)) C2Phi = DCOS(2.D0*Phi(k)) S2Phi = DSIN(2.D0*Phi(k)) CsqPhi = CPhi * CPhi SsqPhi = SPhi * SPhi C C-------------------------------------------------------------------------- C Elastic case with latitude dependence: C h_sub_2 = .6026D0 - .0006D0 * (1.5*SsqPhi - .5D0) C l_sub_2 = .0831D0 + .0002D0 * (1.5*SsqPhi - .5D0) C Anelastic case with latitude dependence: h_sub_2 = .6078D0 - .0006D0 * (1.5D0*SsqPhi - .5D0) l_sub_2 = .0847D0 + .0002D0 * (1.5D0*SsqPhi - .5D0) C term1M = GMMOON / Rmoon_mag**3 dterm1M = -3.D0 * GMMOON * dRmoon_mag / Rmoon_mag**4 term1S = GMSUN / Rsun_mag**3 dterm1S = -3.D0 * GMSUN * dRsun_mag / Rsun_mag**4 C term2 = REARTH**4 / GMEARTH dterm2 = 0.D0 C term3M = h_sub_2 * (1.5D0 * (Rmoon_dot_r)**2 - .5D0) dterm3M = h_sub_2 * 3.D0 * (Rmoon_dot_r) * dRmoon_dot_r term3S = h_sub_2 * (1.5D0 * (Rsun_dot_r)**2 - .5D0) dterm3S = h_sub_2 * 3.D0 * (Rsun_dot_r) * dRsun_dot_r C term4M = 3.D0 * l_sub_2 * Rmoon_dot_r dterm4M = 3.D0 * l_sub_2 * dRmoon_dot_r term4S = 3.D0 * l_sub_2 * Rsun_dot_r dterm4S = 3.D0 * l_sub_2 * dRsun_dot_r C term5M = -3.D0 * l_sub_2 * Rmoon_dot_r**2 dterm5M = -6.D0 * l_sub_2 * Rmoon_dot_r * dRmoon_dot_r term5S = -3.D0 * l_sub_2 * Rsun_dot_r**2 dterm5S = -6.D0 * l_sub_2 * Rsun_dot_r * dRsun_dot_r C term1M_2 = term1M * term2 dterm1M_2 = dterm1M*term2 + term1M*dterm2 C term1S_2 = term1S * term2 dterm1S_2 = dterm1S*term2 + term1S*dterm2 C C Step 1A: Degree 2 tides, using Equation 8, p. 61, IERS Technical Note 21, C IERS Conventions (1996). do kk = 1,3 delta_r2(kk,k) = term1M_2 * ( term3M * r_hat(kk) * + term4M * Rmoon_hat(kk) * + term5M * r_hat(kk) ) * + term1S_2 * ( term3S * r_hat(kk) * + term4S * Rsun_hat(kk) * + term5S * r_hat(kk) ) C ddelta_r2(kk,k) = dterm1M_2 * ( term3M * r_hat(kk) * + term4M * Rmoon_hat(kk) * + term5M * r_hat(kk) ) * + term1M_2 * ( dterm3M * r_hat(kk) + term3M * dr_hat(kk) * + dterm4M * Rmoon_hat(kk) + term4M * dRmoon_hat(kk) * + dterm5M * r_hat(kk) + term5M * dr_hat(kk) ) * + dterm1S_2 * ( term3S * r_hat(kk) * + term4S * Rsun_hat(kk) * + term5S * r_hat(kk) ) * + term1S_2 * ( dterm3S * r_hat(kk) + term3S * dr_hat(kk) * + dterm4S * Rsun_hat(kk) + term4S * dRsun_hat(kk) * + dterm5S * r_hat(kk) + term5S * dr_hat(kk) ) C enddo C!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! C Partials of second order tide with respect to h2 and l2: do kk = 1,3 delta_r2_dh2(kk,k) = term1M_2 * term3M/h_sub_2 * r_hat(kk) * + term1S_2 * term3S/h_sub_2 * r_hat(kk) delta_r2_dl2(kk,k) = term1M_2 * (term4M/l_sub_2 * Rmoon_hat(kk) * + term5M/l_sub_2 * r_hat(kk) ) * + term1S_2 * (term4S/l_sub_2 * Rsun_hat(kk) * + term5S/l_sub_2 * r_hat(kk) ) C ddelta_r2_dh2(kk,k) = dterm1M_2 * term3M/h_sub_2 * r_hat(kk) * + term1M_2 * (dterm3M/h_sub_2 * r_hat(kk) + term3M/h_sub_2 * * dr_hat(kk)) * + dterm1S_2 * term3S/h_sub_2 * r_hat(kk) * + term1S_2 * (dterm3S/h_sub_2 * r_hat(kk) + term3S/h_sub_2 * * dr_hat(kk)) C ddelta_r2_dl2(kk,k) = dterm1M_2 * (term4M/l_sub_2 *Rmoon_hat(kk) * + term5M/l_sub_2 * r_hat(kk) ) * + term1M_2 * ( dterm4M/l_sub_2 * Rmoon_hat(kk) + * term4M/l_sub_2 * dRmoon_hat(kk) * + dterm5M/l_sub_2 * r_hat(kk) + term5M/l_sub_2 * dr_hat(kk)) * * + dterm1S_2 * (term4S/l_sub_2 * Rsun_hat(kk) * + term5S/l_sub_2 * r_hat(kk) ) * + term1S_2 * (dterm4S/l_sub_2 * Rsun_hat(kk) * + term4S/l_sub_2 * dRsun_hat(kk) * + dterm5S/l_sub_2 * r_hat(kk) + term5S/l_sub_2 * * dr_hat(kk) ) enddo C C Tide difference if elastic case used instead of anelastic case Do kk = 1,3 ELASP(kk,k) = -.0052* delta_r2_dh2(kk,k) + * -.0016* delta_r2_dl2(kk,k) ELASV(kk,k) = -.0052*ddelta_r2_dh2(kk,k) + * -.0016*ddelta_r2_dl2(kk,k) Enddo C term01M = GMMOON / Rmoon_mag**4 dterm01M = -4.D0 * GMMOON * dRmoon_mag / Rmoon_mag**5 C term02 = REARTH**5 / GMEARTH dterm02 = 0.D0 C term03M = h_sub_3 * (2.5D0*Rmoon_dot_r**3 - 1.5D0*Rmoon_dot_r) dterm03M = h_sub_3 * (7.5D0*Rmoon_dot_r**2*dRmoon_dot_r - * 1.5D0*dRmoon_dot_r) term04M = l_sub_3 * (7.5D0*Rmoon_dot_r**2 - 1.5D0) dterm04M = l_sub_3 * (15.D0*Rmoon_dot_r*dRmoon_dot_r) C term05M = -l_sub_3 * (7.5D0*Rmoon_dot_r**3 - 1.5D0*Rmoon_dot_r) dterm05M = -l_sub_3 * (22.5D0*Rmoon_dot_r**2*dRmoon_dot_r * - 1.5D0*dRmoon_dot_r) C C Step 1B: Degree 3 tides, using Equation 9, p. 61, IERS Technical Note 21, C IERS Conventions (1996). Do kk = 1,3 delta_r3(kk,k) = term01M*term02 * * ( term03M*r_hat(kk) + * term04M*Rmoon_hat(kk) + * term05M*r_hat(kk) ) C ddelta_r3(kk,k) = dterm01M*term02 * ( term03M*r_hat(kk) + * term04M*Rmoon_hat(kk) + term05M*r_hat(kk) ) * + term01M*term02 * ( dterm03M*r_hat(kk) + term03M*dr_hat(kk) * + dterm04M*Rmoon_hat(kk) + term04M*dRmoon_hat(kk) * + dterm05M*r_hat(kk) + term05M*dr_hat(kk) ) Enddo C C Step 1D, Contributions from latitude dependence C Equations 11 and 12, page 62 C C Legendre polynomials - Moon P12_moon = 3.D0 * CFRmoon(1) * CFRmoon(3) / CFRmoon_mag**2 / * CLamMoon dP12_moon = * 3.D0*dCFRmoon(1)*CFRmoon(3)/CFRmoon_mag**2/CLamMoon * + 3.D0*CFRmoon(1)*dCFRmoon(3)/CFRmoon_mag**2/CLamMoon * - 6.D0*CFRmoon(1)*CFRmoon(3) * dCFRmoon_mag / CFRmoon_mag**3 * /CLamMoon * + 3.D0*CFRmoon(1)*CFRmoon(3)/CFRmoon_mag**2 * * -dCLamMoon / CLamMoon**2 C P22_moon = * (3.D0 / CFRmoon_mag**2) * (CFRmoon(1)**2 - CFRmoon(2)**2) / * C2LamMoon dP22_moon = * (3.D0 / CFRmoon_mag**2) * ( 2.D0*CFRmoon(1)*dCFRmoon(1) - * 2.D0*CFRmoon(2)*dCFRmoon(2) ) / C2LamMoon * - (6.D0*dCFRmoon_mag/CFRmoon_mag**3) * (CFRmoon(1)**2 - * CFRmoon(2)**2) / C2LamMoon * + (3.D0 / CFRmoon_mag**2) * (CFRmoon(1)**2 - CFRmoon(2)**2) * * -dC2LamMoon / C2LamMoon**2 C C Legendre polynomials - Sun P12_sun = 3.D0 * CFRsun(1) * CFRsun(3) / CFRsun_mag**2 / * CLamSun dP12_sun = * 3.D0*dCFRsun(1)*CFRsun(3)/CFRsun_mag**2/CLamSun * + 3.D0*CFRsun(1)*dCFRsun(3)/CFRsun_mag**2/CLamSun * - 6.D0*CFRsun(1)*CFRsun(3) * dCFRsun_mag / CFRsun_mag**3 * /CLamSun * + 3.D0*CFRsun(1)*CFRsun(3)/CFRsun_mag**2 * * -dCLamSun / CLamSun**2 C P22_sun = * (3.D0 / CFRsun_mag**2) * (CFRsun(1)**2 - CFRsun(2)**2) / * C2LamSun dP22_sun = * (3.D0 / CFRsun_mag**2) * ( 2.D0*CFRsun(1)*dCFRsun(1) - * 2.D0*CFRsun(2)*dCFRsun(2) ) / C2LamSun * - (6.D0*dCFRsun_mag/CFRsun_mag**3) * (CFRsun(1)**2 - * CFRsun(2)**2) / C2LamSun * + (3.D0 / CFRsun_mag**2) * (CFRsun(1)**2 - CFRsun(2)**2) * * -dC2LamSun / C2LamSun**2 C C Step 1D1: Equation 11, page 62, topocentric contribution from the diurnal C band (with l_1 = 0.0012) l1_11 = 0.0012D0 C Up topo11(1,k) = 0.D0 dtopo11(1,k) = 0.D0 C East topo11(2,k) = l1_11 * SPhi * term1M_2 * P12_moon * C2Phi*SLLMoon * + l1_11 * SPhi * term1S_2 * P12_sun * C2Phi *SLLSun dtopo11(2,k) = * l1_11 * SPhi * dterm1M_2 * P12_moon * C2Phi * SLLMoon * + l1_11 * SPhi * term1M_2 * dP12_moon * C2Phi * SLLMoon * + l1_11 * SPhi * term1M_2 * P12_moon * C2Phi * dSLLMoon * + l1_11 * SPhi * dterm1S_2 * P12_sun * C2Phi * SLLSun * + l1_11 * SPhi * term1S_2 * dP12_sun * C2Phi * SLLSun * + l1_11 * SPhi * term1S_2 * P12_sun * C2Phi * dSLLSun C C North topo11(3,k) = -l1_11 * SPhi**2 * term1M_2 * P12_moon * CLLMoon * - l1_11 * SPhi**2 * term1S_2 * P12_sun * CLLSun dtopo11(3,k) = -l1_11 * SPhi**2 * dterm1M_2 * P12_moon * CLLMoon * - l1_11 * SPhi**2 * term1M_2 * dP12_moon * CLLMoon * - l1_11 * SPhi**2 * term1M_2 * P12_moon * dCLLMoon * - l1_11 * SPhi**2 * dterm1S_2 * P12_sun * CLLSun * - l1_11 * SPhi**2 * term1S_2 * dP12_sun * CLLSun * - l1_11 * SPhi**2 * term1S_2 * P12_sun * dCLLSun C C Rotate vectors from topocentric to crust-fixed and then from crust-fixed C to J2000. CALL VECRT( RTTOCF(1,1,k), topo11(1,k), CF11(1,k) ) CALL VECRT( R2000(1,1,1), CF11(1,k), delta11(1,k) ) C CALL VECRT( RTTOCF(1,1,k), dtopo11(1,k), dCF11(1,k) ) CALL VECRT( R2000(1,1,1), dCF11(1,k), vec1 ) CALL VECRT( R2000(1,1,2), CF11(1,k), vec2 ) CALL VECAD( vec1, vec2, ddelta11(1,k) ) C C Step 1D2: Equation 12, page 62, topocentric contribution from the C semidiurnal band (with l_1 = 0.0024) l1_12 = 0.0024D0 C Up topo12(1,k) = 0.D0 dtopo12(1,k) = 0.D0 C East topo12(2,k) = -0.5D0 * l1_12 * SPhi * CPhi * term1M_2 * P22_moon * * SPhi * S2LLMoon * - 0.5D0 * l1_12 * SPhi * CPhi * term1S_2 * P22_sun * * SPhi * S2LLSun dtopo12(2,k) = * -0.5D0 * l1_12 * SPhi * CPhi * dterm1M_2 * P22_moon * * SPhi * S2LLMoon * - 0.5D0 * l1_12 * SPhi * CPhi * term1M_2 * dP22_moon * * SPhi * S2LLMoon * - 0.5D0 * l1_12 * SPhi * CPhi * term1M_2 * P22_moon * * SPhi * dS2LLMoon * * - 0.5D0 * l1_12 * SPhi * CPhi * dterm1S_2 * P22_sun * * SPhi * S2LLSun * - 0.5D0 * l1_12 * SPhi * CPhi * term1S_2 * dP22_sun * * SPhi * S2LLSun * - 0.5D0 * l1_12 * SPhi * CPhi * term1S_2 * P22_sun * * SPhi * dS2LLSun C North topo12(3,k) = * -0.5D0 * l1_12 * SPhi * CPhi * term1M_2 * P22_moon * C2LLMoon * - 0.5D0 * l1_12 * SPhi * CPhi * term1S_2 * P22_sun * C2LLSun C dtopo12(3,k) = * -0.5D0 * l1_12 * SPhi * CPhi * dterm1M_2 * P22_moon * C2LLMoon * - 0.5D0 * l1_12 * SPhi * CPhi * term1M_2 * dP22_moon * C2LLMoon * - 0.5D0 * l1_12 * SPhi * CPhi * term1M_2 * P22_moon * dC2LLMoon * - 0.5D0 * l1_12 * SPhi * CPhi * dterm1S_2 * P22_sun * C2LLSun * - 0.5D0 * l1_12 * SPhi * CPhi * term1S_2 * dP22_sun * C2LLSun * - 0.5D0 * l1_12 * SPhi * CPhi * term1S_2 * P22_sun * dC2LLSun C C Rotate vectors from topocentric to crust-fixed and then from crust-fixed C to J2000. CALL VECRT( RTTOCF(1,1,k), topo12(1,k), CF12(1,k) ) CALL VECRT( R2000(1,1,1), CF12(1,k), delta12(1,k) ) C CALL VECRT( RTTOCF(1,1,k), dtopo12(1,k), dCF12(1,k) ) CALL VECRT( R2000(1,1,1), dCF12(1,k), vec1 ) CALL VECRT( R2000(1,1,2), CF12(1,k), vec2 ) CALL VECAD( vec1, vec2, ddelta12(1,k) ) C C C Step 1C1. Equation 13, Out-of-Phase for degree 2 only, diurnal components h_I13 = -0.0025D0 l_I13 = -0.0007D0 C C Equation 13A: Up component topo13(1,k) = * -.75D0 * h_I13 * term1M_2 * S2PhiMoon * S2Phi * SLLMoon * -.75D0 * h_I13 * term1S_2 * S2PhiSun * S2Phi * SLLSun dtopo13(1,k) = * -.75D0 * h_I13 * dterm1M_2 * S2PhiMoon * S2Phi * SLLMoon * -.75D0 * h_I13 * term1M_2 * dS2PhiMoon * S2Phi * SLLMoon * -.75D0 * h_I13 * term1M_2 * S2PhiMoon * S2Phi * dSLLMoon * -.75D0 * h_I13 * dterm1S_2 * S2PhiSun * S2Phi * SLLSun * -.75D0 * h_I13 * term1S_2 * dS2PhiSun * S2Phi * SLLSun * -.75D0 * h_I13 * term1S_2 * S2PhiSun * S2Phi * dSLLSun C C Equation 13B: East component topo13(2,k) = * -1.5D0 * l_I13 * term1M_2 * S2PhiMoon * SPhi * CLLMoon * -1.5D0 * l_I13 * term1S_2 * S2PhiSun * SPhi * CLLSun dtopo13(2,k) = * -1.5D0 * l_I13 * dterm1M_2 * S2PhiMoon * SPhi * CLLMoon * -1.5D0 * l_I13 * term1M_2 * dS2PhiMoon * SPhi * CLLMoon * -1.5D0 * l_I13 * term1M_2 * S2PhiMoon * SPhi * dCLLMoon * -1.5D0 * l_I13 * dterm1S_2 * S2PhiSun * SPhi * CLLSun * -1.5D0 * l_I13 * term1S_2 * dS2PhiSun * SPhi * CLLSun * -1.5D0 * l_I13 * term1S_2 * S2PhiSun * SPhi * dCLLSun C C Equation 13B: North component topo13(3,k) = * -1.5D0 * l_I13 * term1M_2 * S2PhiMoon * C2Phi * SLLMoon * -1.5D0 * l_I13 * term1S_2 * S2PhiSun * C2Phi * SLLSun dtopo13(3,k) = * -1.5D0 * l_I13 * dterm1M_2 * S2PhiMoon * C2Phi * SLLMoon * -1.5D0 * l_I13 * term1M_2 * dS2PhiMoon * C2Phi * SLLMoon * -1.5D0 * l_I13 * term1M_2 * S2PhiMoon * C2Phi * dSLLMoon * * -1.5D0 * l_I13 * dterm1S_2 * S2PhiSun * C2Phi * SLLSun * -1.5D0 * l_I13 * term1S_2 * dS2PhiSun * C2Phi * SLLSun * -1.5D0 * l_I13 * term1S_2 * S2PhiSun * C2Phi * dSLLSun C C Rotate vectors from topocentric to crust-fixed and then from crust-fixed C to J2000. CALL VECRT( RTTOCF(1,1,k), topo13(1,k), CF13(1,k) ) CALL VECRT( R2000(1,1,1), CF13(1,k), delta13(1,k) ) C CALL VECRT( RTTOCF(1,1,k), dtopo13(1,k), dCF13(1,k) ) CALL VECRT( R2000(1,1,1), dCF13(1,k), vec1 ) CALL VECRT( R2000(1,1,2), CF13(1,k), vec2 ) CALL VECAD( vec1, vec2, ddelta13(1,k) ) C C Step 1C2. Equation 14, Out-of-Phase for degree 2 only, semidiurnal C components h_I14 = -0.0022D0 l_I14 = -0.0007D0 C C Equation 14A: Up component topo14(1,k) = * -.75D0 * h_I14 * term1M_2 * CsqPhiMoon * Cphi**2 * S2LLMoon * -.75D0 * h_I14 * term1S_2 * CsqPhiSun * Cphi**2 * S2LLSun dtopo14(1,k) = * -.75D0 * h_I14 * dterm1M_2 * CsqPhiMoon * Cphi**2 * S2LLMoon * -.75D0 * h_I14 * term1M_2 * dCsqPhiMoon * Cphi**2 * S2LLMoon * -.75D0 * h_I14 * term1M_2 * CsqPhiMoon * Cphi**2 * dS2LLMoon * * -.75D0 * h_I14 * dterm1S_2 * CsqPhiSun * Cphi**2 * S2LLSun * -.75D0 * h_I14 * term1S_2 * dCsqPhiSun * Cphi**2 * S2LLSun * -.75D0 * h_I14 * term1S_2 * CsqPhiSun * Cphi**2 * dS2LLSun C C Equation 14B: East component topo14(2,k) = * .75D0 * l_I14 * term1M_2 * CsqPhiMoon * -2.D0*CPhi * C2LLMoon * + .75D0 * l_I14 * term1S_2 * CsqPhiSun * -2.D0*CPhi * C2LLSun dtopo14(2,k) = * .75D0 * l_I14 * dterm1M_2 * CsqPhiMoon * -2.D0*CPhi * C2LLMoon * + .75D0 * l_I14 * term1M_2 * dCsqPhiMoon * -2.D0*CPhi * C2LLMoon * + .75D0 * l_I14 * term1M_2 * CsqPhiMoon * -2.D0*CPhi * dC2LLMoon * + .75D0 * l_I14 * dterm1S_2 * CsqPhiSun * -2.D0*CPhi * C2LLSun * + .75D0 * l_I14 * term1S_2 * dCsqPhiSun * -2.D0*CPhi * C2LLSun * + .75D0 * l_I14 * term1S_2 * CsqPhiSun * -2.D0*CPhi * dC2LLSun C C Equation 14B: North component topo14(3,k) = * .75D0 * l_I14 * term1M_2 * CsqPhiMoon * S2Phi * S2LLMoon * + .75D0 * l_I14 * term1S_2 * CsqPhiSun * S2Phi * S2LLSun dtopo14(3,k) = * .75D0 * l_I14 * dterm1M_2 * CsqPhiMoon * S2Phi * S2LLMoon * + .75D0 * l_I14 * term1M_2 * dCsqPhiMoon * S2Phi * S2LLMoon * + .75D0 * l_I14 * term1M_2 * CsqPhiMoon * S2Phi * dS2LLMoon * * + .75D0 * l_I14 * dterm1S_2 * CsqPhiSun * S2Phi * S2LLSun * + .75D0 * l_I14 * term1S_2 * dCsqPhiSun * S2Phi * S2LLSun * + .75D0 * l_I14 * term1S_2 * CsqPhiSun * S2Phi * dS2LLSun C C Rotate vectors from topocentric to crust-fixed and then from crust-fixed C to J2000. CALL VECRT( RTTOCF(1,1,k), topo14(1,k), CF14(1,k) ) CALL VECRT( R2000(1,1,1), CF14(1,k), delta14(1,k) ) C CALL VECRT( RTTOCF(1,1,k), dtopo14(1,k), dCF14(1,k) ) CALL VECRT( R2000(1,1,1), dCF14(1,k), vec1 ) CALL VECRT( R2000(1,1,2), CF14(1,k), vec2 ) CALL VECAD( vec1, vec2, ddelta14(1,k) ) C C Step 2A, Equation 15, Frequency domain corrections. In phase for degree C 2, diurnal tides. Computed using the Delauney fundamental arguments C do ll=1,5 fund_arg(ll) = fa(ll) * CONVDS dfund_arg(ll) = fad(ll) * CONVDS / 3.155734D9 ! time derivative enddo fund_arg(6) = GAST(1) + PI dfund_arg(6) = GAST(2) C Do jf =1, 11 arg = 0.D0 d_arg = 0.D0 Do ll=1,6 arg = arg - Table73a(ll,jf)* fund_arg(ll) d_arg = d_arg - Table73a(ll,jf)*dfund_arg(ll) Enddo theta15(jf) = DMOD(arg,TWOPI) c dtheta15(jf) = DMOD(d_arg,TWOPI) dtheta15(jf) = d_arg Enddo C Do I=1,3 topo15(I,k) = 0.0D0 dtopo15(I,k) = 0.0D0 Enddo C Do jf=1,11 C C Up component (meters) topo15(1,k) = topo15(1,k) + Table73a(9,jf) * S2Phi * * DSIN(theta15(jf) + SITLON(k)) * 1.D-3 dtopo15(1,k) = dtopo15(1,k) + Table73a(9,jf) * S2Phi * * DCOS(theta15(jf) + SITLON(k)) * dtheta15(jf) * 1.D-3 C C East component (meters) topo15(2,k) = topo15(2,k) + Table73a(10,jf) * SPhi * * DCOS(theta15(jf) + SITLON(k)) * 1.D-3 dtopo15(2,k) = dtopo15(2,k) + Table73a(10,jf) * SPhi * * -DSIN(theta15(jf) + SITLON(k)) * dtheta15(jf)*1.D-3 C C North component (meters) topo15(3,k) = topo15(3,k) + Table73a(10,jf) * C2Phi * * DSIN(theta15(jf) + SITLON(k)) * 1.D-3 dtopo15(3,k) = dtopo15(3,k) + Table73a(10,jf) * C2Phi * * DCOS(theta15(jf) + SITLON(k)) * dtheta15(jf) * 1.D-3 C Enddo C C Rotate vectors from topocentric to crust-fixed and then from crust-fixed C to J2000. CALL VECRT( RTTOCF(1,1,k), topo15(1,k), CF15(1,k) ) CALL VECRT( R2000(1,1,1), CF15(1,k), delta15(1,k) ) C CALL VECRT( RTTOCF(1,1,k), dtopo15(1,k), dCF15(1,k) ) CALL VECRT( R2000(1,1,1), dCF15(1,k), vec1 ) CALL VECRT( R2000(1,1,2), CF15(1,k), vec2 ) CALL VECAD( vec1, vec2, ddelta15(1,k) ) C C Step 2B, Equation 16, Frequency domain corrections, in phase and out of C phase for degree 2, long period tides. Computed using the Delauney C fundamental arguments C Do jf =1, 5 arg = 0.D0 d_arg = 0.D0 Do ll=1,6 arg = arg - Table73b(ll,jf)* fund_arg(ll) d_arg = d_arg - Table73b(ll,jf)*dfund_arg(ll) Enddo theta16(jf) = DMOD(arg,TWOPI) c dtheta16(jf) = DMOD(d_arg,TWOPI) dtheta16(jf) = d_arg Enddo C Do I=1,3 topo16(I,k) = 0.0D0 dtopo16(I,k) = 0.0D0 Enddo C Do jf=1,5 C Up component (meters) topo16(1,k) = topo16(1,k) + (1.5D0*SPhi**2 - .5D0) * * ( Table73b(9,jf)*DCOS(theta16(jf)) + * Table73b(11,jf)*DSIN(theta16(jf)) ) * 1.D-3 dtopo16(1,k) = dtopo16(1,k) + (1.5D0*SPhi**2 -.5D0) * * (-Table73b(9,jf)*DSIN(theta16(jf))*dtheta16(jf) + * Table73b(11,jf)*DCOS(theta16(jf))*dtheta16(jf) ) * * 1.D-3 C C East component (meters) ==> ZERO c topo16(2,k) = 0.0D0 c dtopo16(2,k) = 0.0D0 C C North component (meters) topo16(3,k) = topo16(3,k) * + S2Phi * ( Table73b(10,jf)*DCOS(theta16(jf)) + * Table73b(12,jf)*DSIN(theta16(jf)) ) * 1.D-3 dtopo16(3,k) = dtopo16(3,k) * + S2Phi * (-Table73b(10,jf)*DSIN(theta16(jf))*dtheta16(jf) + * Table73b(12,jf)*DCOS(theta16(jf))*dtheta16(jf) ) * 1.D-3 C Enddo C C Rotate vectors from topocentric to crust-fixed and then from crust-fixed C to J2000. CALL VECRT( RTTOCF(1,1,k), topo16(1,k), CF16(1,k) ) CALL VECRT( R2000(1,1,1), CF16(1,k), delta16(1,k) ) C CALL VECRT( RTTOCF(1,1,k), dtopo16(1,k), dCF16(1,k) ) CALL VECRT( R2000(1,1,1), dCF16(1,k), vec1 ) CALL VECRT( R2000(1,1,2), CF16(1,k), vec2 ) CALL VECAD( vec1, vec2, ddelta16(1,k) ) C C C Compute the 'Permanent Deformation' component of the solid Earth tide: C C Up component T17A = DSQRT(5.D0/(4.D0*PI)) * -.31460D0 topo17(1,k) = T17A * h_sub_2 * (1.5D0*SsqPhi - .5D0) dtopo17(1,k) = 0.D0 C East component topo17(2,k) = 0.D0 dtopo17(2,k) = 0.D0 C North component T17B = T17A * 1.5D0 topo17(3,k) = T17B * l_sub_2 * S2Phi dtopo17(3,k) = 0.D0 C C Rotate vectors from topocentric to crust-fixed and then from crust-fixed C to J2000. CALL VECRT( RTTOCF(1,1,k), topo17(1,k), CF17(1,k) ) CALL VECRT( R2000(1,1,1), CF17(1,k), delta17(1,k) ) CALL VECRT( R2000(1,1,2), CF17(1,k), ddelta17(1,k) ) C C Permanent tide difference if elastic case used: topo17el(1,k) = -.0052D0*topo17(1,k)/h_sub_2 topo17el(2,k) = 0.D0 topo17el(3,k) = -.0016D0*topo17(3,k)/l_sub_2 CALL VECRT( RTTOCF(1,1,k),topo17el(1,k),CF17el(1,k) ) CALL VECRT( R2000(1,1,1), CF17el(1,k), del17el(1,k) ) C Combine with previous elastic/anelastic difference Do kk = 1,3 ELASP(kk,k) = ELASP(kk,k) - del17el(kk,k) Enddo C C Finished computing all the pieces, now add them up Do kk = 1,3 TIDEP(kk,k) = delta_r2(kk,k) + delta_r3(kk,k) * + delta11(kk,k) + delta12(kk,k) + delta13(kk,k) * + delta14(kk,k) + delta15(kk,k) + delta16(kk,k) * - delta17(kk,k) C TIDEV(kk,k) = ddelta_r2(kk,k) + ddelta_r3(kk,k) * + ddelta11(kk,k) + ddelta12(kk,k) + ddelta13(kk,k) * + ddelta14(kk,k) + ddelta15(kk,k) + ddelta16(kk,k) * - ddelta17(kk,k) C Enddo C C**************************************************************************** C Compute partials from John Gipson's memo C Skip at Correlators IF (Calc_user .eq. 'C') GO TO 1212 C C h2 partials, will be in J2000 frame DO kk=1,3 C C Partial of station position w.r.t. the semi-diurnal real h2: h2_R_s(kk,k) = 0.75D0*r_hat(kk) * * ( (term1M_2 * CPhi**2 * CsqPhiMoon * C2LLMoon) * + (term1S_2 * CPhi**2 * CsqPhiSun * C2LLSun ) ) C Derivative dh2_R_s(kk,k) = 0.75D0*dr_hat(kk) * * ( (term1M_2 * CPhi**2 * CsqPhiMoon * C2LLMoon) * + (term1S_2 * CPhi**2 * CsqPhiSun * C2LLSun ) ) * + 0.75D0*r_hat(kk) * * ( (dterm1M_2 * CPhi**2 * CsqPhiMoon * C2LLMoon) * + (dterm1S_2 * CPhi**2 * CsqPhiSun * C2LLSun ) ) * + 0.75D0*r_hat(kk) * * ( (term1M_2 * CPhi**2 * dCsqPhiMoon * C2LLMoon) * + (term1S_2 * CPhi**2 * dCsqPhiSun * C2LLSun ) ) * + 0.75D0*r_hat(kk) * * ( (term1M_2 * CPhi**2 * CsqPhiMoon * dC2LLMoon) * + (term1S_2 * CPhi**2 * CsqPhiSun * dC2LLSun ) ) C C Partial of station position w.r.t. the semi-diurnal imaginary h2: h2_I_s(kk,k) = -0.75D0*r_hat(kk) * * ( (term1M_2 * CPhi**2 * CsqPhiMoon * S2LLMoon) * + (term1S_2 * CPhi**2 * CsqPhiSun * S2LLSun ) ) C Derivative dh2_I_s(kk,k) = -0.75D0*dr_hat(kk) * * ( (term1M_2 * CPhi**2 * CsqPhiMoon * S2LLMoon) * + (term1S_2 * CPhi**2 * CsqPhiSun * S2LLSun ) ) * + -0.75D0*r_hat(kk) * * ( (dterm1M_2 * CPhi**2 * CsqPhiMoon * S2LLMoon) * + (dterm1S_2 * CPhi**2 * CsqPhiSun * S2LLSun ) ) * + -0.75D0*r_hat(kk) * * ( (term1M_2 * CPhi**2 * dCsqPhiMoon * S2LLMoon) * + (term1S_2 * CPhi**2 * dCsqPhiSun * S2LLSun ) ) * + -0.75D0*r_hat(kk) * * ( (term1M_2 * CPhi**2 * CsqPhiMoon * dS2LLMoon) * + (term1S_2 * CPhi**2 * CsqPhiSun * dS2LLSun ) ) C C Partial of station position w.r.t. the diurnal real h2: h2_R_d(kk,k) = 0.75D0*r_hat(kk) * * ( (term1M_2 * S2Phi * S2PhiMoon * CLLMoon) * + (term1S_2 * S2Phi * S2PhiSun * CLLSun ) ) C Derivative dh2_R_d(kk,k) = 0.75D0*dr_hat(kk) * * ( (term1M_2 * S2Phi * S2PhiMoon * CLLMoon) * + (term1S_2 * S2Phi * S2PhiSun * CLLSun ) ) * + 0.75D0*r_hat(kk) * * ( (dterm1M_2 * S2Phi * S2PhiMoon * CLLMoon) * + (dterm1S_2 * S2Phi * S2PhiSun * CLLSun ) ) * + 0.75D0*r_hat(kk) * * ( (term1M_2 * S2Phi * dS2PhiMoon * CLLMoon) * + (term1S_2 * S2Phi * dS2PhiSun * CLLSun ) ) * + 0.75D0*r_hat(kk) * * ( (term1M_2 * S2Phi * S2PhiMoon * dCLLMoon) * + (term1S_2 * S2Phi * S2PhiSun * dCLLSun ) ) C C Partial of station position w.r.t. the diurnal imaginary h2: h2_I_d(kk,k) = -0.75D0*r_hat(kk) * * ( (term1M_2 * S2Phi * S2PhiMoon * SLLMoon) * + (term1S_2 * S2Phi * S2PhiSun * SLLSun ) ) C Derivative dh2_I_d(kk,k) = -0.75D0*dr_hat(kk) * * ( (term1M_2 * S2Phi * S2PhiMoon * SLLMoon) * + (term1S_2 * S2Phi * S2PhiSun * SLLSun ) ) * - 0.75D0*r_hat(kk) * * ( (dterm1M_2 * S2Phi * S2PhiMoon * SLLMoon) * + (dterm1S_2 * S2Phi * S2PhiSun * SLLSun ) ) * - 0.75D0*r_hat(kk) * * ( (term1M_2 * S2Phi * dS2PhiMoon * SLLMoon) * + (term1S_2 * S2Phi * dS2PhiSun * SLLSun ) ) * - 0.75D0*r_hat(kk) * * ( (term1M_2 * S2Phi * S2PhiMoon * dSLLMoon) * + (term1S_2 * S2Phi * S2PhiSun * dSLLSun ) ) C C Partial of station position w.r.t. the long period real h2: h2_R_l(kk,k) = .25D0 * r_hat(kk) * (1.D0 - 3.D0*SPhi**2) * * ( ( term1M_2 * (1.D0 - 3.D0*SsqPhiMoon) ) * + ( term1S_2 * (1.D0 - 3.D0*SsqPhiSun ) ) ) C C Derivative dh2_R_l(kk,k) = .25D0 * dr_hat(kk) * (1.D0 - 3.D0*SPhi**2) * * ( ( term1M_2 * (1.D0 - 3.D0*SsqPhiMoon) ) * + ( term1S_2 * (1.D0 - 3.D0*SsqPhiSun) ) ) * + .25D0 * r_hat(kk) * (1.D0 - 3.D0*SPhi**2) * * ( (dterm1M_2 * (1.D0 - 3.D0*SsqPhiMoon) ) * + (dterm1S_2 * (1.D0 - 3.D0*SsqPhiSun) ) ) * + .25D0 * r_hat(kk) * (1.D0 - 3.D0*SPhi**2) * * ( (term1M_2 * -3.D0 * dSsqPhiMoon) * + (term1S_2 * -3.D0 * dSsqPhiSun ) ) C C Partial of station position w.r.t. the long period imaginary h2: h2_I_l(kk,k) = 0.D0 C Derivative dh2_I_l(kk,k) = 0.D0 C ENDDO C C Compute East and North components of l2 partials. We will then rotate C them to the J2000 frame. C C Partial of station position w.r.t. the semi-diurnal real l2: l2_R_s(1,k) = 0.D0 l2_R_s(2,k) = -term1M_2 * 1.5D0 * CPhi * CsqPhiMoon * S2LLMoon * - term1S_2 * 1.5D0 * CPhi * CsqPhiSun * S2LLSun l2_R_s(3,k) = -term1M_2 * .75D0 * S2Phi * CsqPhiMoon * C2LLMoon * - term1S_2 * .75D0 * S2Phi * CsqPhiSun * C2LLSun C C Derivative dl2_R_s(1,k) = 0.D0 dl2_R_s(2,k) = * -dterm1M_2 * 1.5D0 * CPhi * CsqPhiMoon * S2LLMoon * - dterm1S_2 * 1.5D0 * CPhi * CsqPhiSun * S2LLSun * - term1M_2 * 1.5D0 * CPhi * dCsqPhiMoon * S2LLMoon * - term1S_2 * 1.5D0 * CPhi * dCsqPhiSun * S2LLSun * - term1M_2 * 1.5D0 * CPhi * CsqPhiMoon * dS2LLMoon * - term1S_2 * 1.5D0 * CPhi * CsqPhiSun * dS2LLSun C dl2_R_s(3,k) = * -dterm1M_2 * .75D0 * S2Phi * CsqPhiMoon * C2LLMoon * - dterm1S_2 * .75D0 * S2Phi * CsqPhiSun * C2LLSun * - term1M_2 * .75D0 * S2Phi * dCsqPhiMoon * C2LLMoon * - term1S_2 * .75D0 * S2Phi * dCsqPhiSun * C2LLSun * - term1M_2 * .75D0 * S2Phi * CsqPhiMoon * dC2LLMoon * - term1S_2 * .75D0 * S2Phi * CsqPhiSun * dC2LLSun C C Rotate to J2000 CALL VECRT( RTTOCF(1,1,k), l2_R_s(1,k), CFtmp ) CALL VECRT( R2000(1,1,1), CFtmp, l2_R_s2000(1,k) ) C Rotate derivative to crust fixed frame call vecrt( RTTOCF(1,1,k),dl2_R_s(1,k),vect1) C Then rotate to J2000 frame: call vecrt(R2000(1,1,1), vect1, vect2) call vecrt(R2000(1,1,2), CFtmp ,vect3) call vecad(vect2, vect3, dl2_R_s2000(1,k) ) C C Partial of station position w.r.t. the semi-diurnal imaginary l2: l2_I_s(1,k) = 0.D0 l2_I_s(2,k) = -term1M_2 * 1.5D0 * CPhi * CsqPhiMoon * C2LLMoon * - term1S_2 * 1.5D0 * CPhi * CsqPhiSun * C2LLSun l2_I_s(3,k) = term1M_2 * .75D0 * CsqPhiMoon * S2Phi * S2LLMoon * + term1S_2 * .75D0 * CsqPhiSun * S2Phi * S2LLSun C C Derivative dl2_I_s(1,k) = 0.D0 dl2_I_s(2,k) = * -dterm1M_2 * 1.5D0 * CPhi * CsqPhiMoon * C2LLMoon * - dterm1S_2 * 1.5D0 * CPhi * CsqPhiSun * C2LLSun * - term1M_2 * 1.5D0 * CPhi * dCsqPhiMoon * C2LLMoon * - term1S_2 * 1.5D0 * CPhi * dCsqPhiSun * C2LLSun * - term1M_2 * 1.5D0 * CPhi * CsqPhiMoon * dC2LLMoon * - term1S_2 * 1.5D0 * CPhi * CsqPhiSun * dC2LLSun dl2_I_s(3,k) = * dterm1M_2 * .75D0 * CsqPhiMoon * S2Phi * S2LLMoon * + dterm1S_2 * .75D0 * CsqPhiSun * S2Phi * S2LLSun * + term1M_2 * .75D0 * dCsqPhiMoon * S2Phi * S2LLMoon * + term1S_2 * .75D0 * dCsqPhiSun * S2Phi * S2LLSun * + term1M_2 * .75D0 * CsqPhiMoon * S2Phi * dS2LLMoon * + term1S_2 * .75D0 * CsqPhiSun * S2Phi * dS2LLSun C C Rotate to J2000 CALL VECRT( RTTOCF(1,1,k), l2_I_s(1,k), CFtmp ) CALL VECRT( R2000(1,1,1), CFtmp, l2_I_s2000(1,k) ) C Rotate derivative to crust fixed frame call vecrt( RTTOCF(1,1,k),dl2_I_s(1,k),vect1) C Then rotate to J2000 frame: call vecrt(R2000(1,1,1), vect1, vect2) call vecrt(R2000(1,1,2), CFtmp ,vect3) call vecad(vect2, vect3, dl2_I_s2000(1,k) ) C C Partial of station position w.r.t. the diurnal real l2: l2_R_d(1,k) = 0.D0 l2_R_d(2,k) = -term1M_2 * 1.5D0 * SPhi * S2PhiMoon * SLLMoon * - term1S_2 * 1.5D0 * SPhi * S2PhiSun * SLLSun l2_R_d(3,k) = term1M_2 * 1.5D0 * C2Phi * S2PhiMoon * CLLMoon * + term1S_2 * 1.5D0 * C2Phi * S2PhiSun * CLLSun C C Derivative dl2_R_d(1,k) = 0.D0 dl2_R_d(2,k) = -dterm1M_2 * 1.5D0 * SPhi * S2PhiMoon * SLLMoon * - dterm1S_2 * 1.5D0 * SPhi * S2PhiSun * SLLSun * - term1M_2 * 1.5D0 * SPhi * dS2PhiMoon * SLLMoon * - term1S_2 * 1.5D0 * SPhi * dS2PhiSun * SLLSun * - term1M_2 * 1.5D0 * SPhi * S2PhiMoon * dSLLMoon * - term1S_2 * 1.5D0 * SPhi * S2PhiSun * dSLLSun dl2_R_d(3,k) = dterm1M_2 * 1.5D0 * C2Phi * S2PhiMoon * CLLMoon * + dterm1S_2 * 1.5D0 * C2Phi * S2PhiSun * CLLSun * + term1M_2 * 1.5D0 * C2Phi * dS2PhiMoon * CLLMoon * + term1S_2 * 1.5D0 * C2Phi * dS2PhiSun * CLLSun * + term1M_2 * 1.5D0 * C2Phi * S2PhiMoon * dCLLMoon * + term1S_2 * 1.5D0 * C2Phi * S2PhiSun * dCLLSun C C Rotate to J2000 CALL VECRT( RTTOCF(1,1,k), l2_R_d(1,k), CFtmp ) CALL VECRT( R2000(1,1,1), CFtmp, l2_R_d2000(1,k) ) C Rotate derivative to crust fixed frame call vecrt( RTTOCF(1,1,k),dl2_R_d(1,k),vect1) C Then rotate to J2000 frame: call vecrt(R2000(1,1,1), vect1, vect2) call vecrt(R2000(1,1,2), CFtmp ,vect3) call vecad(vect2, vect3, dl2_R_d2000(1,k) ) C C Partial of station position w.r.t. the diurnal imaginary l2: l2_I_d(1,k) = 0.D0 l2_I_d(2,k) = -term1M_2 * 1.5D0 * SPhi * S2PhiMoon * CLLMoon * - term1S_2 * 1.5D0 * SPhi * S2PhiSun * CLLSun l2_I_d(3,k) = -term1M_2 * 1.5D0 * C2Phi * S2PhiMoon * SLLMoon * - term1S_2 * 1.5D0 * C2Phi * S2PhiSun * SLLSun C C Derivative dl2_I_d(1,k) = 0.D0 dl2_I_d(2,k) = -dterm1M_2 * 1.5D0 * SPhi * S2PhiMoon * CLLMoon * - dterm1S_2 * 1.5D0 * SPhi * S2PhiSun * CLLSun * - term1M_2 * 1.5D0 * SPhi * dS2PhiMoon * CLLMoon * - term1S_2 * 1.5D0 * SPhi * dS2PhiSun * CLLSun * - term1M_2 * 1.5D0 * SPhi * S2PhiMoon * dCLLMoon * - term1S_2 * 1.5D0 * SPhi * S2PhiSun * dCLLSun dl2_I_d(3,k) = -dterm1M_2 * 1.5D0 * C2Phi * S2PhiMoon * SLLMoon * - dterm1S_2 * 1.5D0 * C2Phi * S2PhiSun * SLLSun * - term1M_2 * 1.5D0 * C2Phi * dS2PhiMoon * SLLMoon * - term1S_2 * 1.5D0 * C2Phi * dS2PhiSun * SLLSun * - term1M_2 * 1.5D0 * C2Phi * S2PhiMoon * dSLLMoon * - term1S_2 * 1.5D0 * C2Phi * S2PhiSun * dSLLSun C C Rotate to J2000 CALL VECRT( RTTOCF(1,1,k), l2_I_d(1,k), CFtmp ) CALL VECRT( R2000(1,1,1), CFtmp, l2_I_d2000(1,k) ) C Rotate derivative to crust fixed frame call vecrt( RTTOCF(1,1,k),dl2_I_d(1,k),vect1) C Then rotate to J2000 frame: call vecrt(R2000(1,1,1), vect1, vect2) call vecrt(R2000(1,1,2), CFtmp ,vect3) call vecad(vect2, vect3, dl2_I_d2000(1,k) ) C C Partial of station position w.r.t. the long period real l2: l2_R_l(1,k) = 0.D0 l2_R_l(2,k) = 0.D0 l2_R_l(3,k) = * term1M_2 * .75D0 * S2Phi * (3.D0*SsqPhiMoon - 1.D0) * + term1S_2 * .75D0 * S2Phi * (3.D0*SsqPhiSun - 1.D0) C C Derivative dl2_R_l(1,k) = 0.D0 dl2_R_l(2,k) = 0.D0 dl2_R_l(3,k) = * dterm1M_2 * .75D0 * S2Phi * (3.D0*SsqPhiMoon - 1.D0) * + dterm1S_2 * .75D0 * S2Phi * (3.D0*SsqPhiSun - 1.D0) * + term1M_2 * .75D0 * S2Phi * 3.D0 * dSsqPhiMoon * + term1S_2 * .75D0 * S2Phi * 3.D0 * dSsqPhiSun C C Rotate to J2000 CALL VECRT( RTTOCF(1,1,k), l2_R_l(1,k), CFtmp ) CALL VECRT( R2000(1,1,1), CFtmp, l2_R_l2000(1,k) ) C Rotate derivative to crust fixed frame call vecrt( RTTOCF(1,1,k),dl2_R_l(1,k),vect1) C Then rotate to J2000 frame: call vecrt(R2000(1,1,1), vect1, vect2) call vecrt(R2000(1,1,2), CFtmp ,vect3) call vecad(vect2, vect3, dl2_R_l2000(1,k) ) C C Partial of station position w.r.t. the long period imaginary l2: l2_I_l(1,k) = 0.D0 l2_I_l(2,k) = 0.D0 l2_I_l(3,k) = 0.D0 C C Derivative dl2_I_l(1,k) = 0.D0 dl2_I_l(2,k) = 0.D0 dl2_I_l(3,k) = 0.D0 C C Rotate to J2000 l2_I_l2000(1,k) = 0.D0 l2_I_l2000(2,k) = 0.D0 l2_I_l2000(3,k) = 0.D0 dl2_I_l2000(1,k) = 0.D0 dl2_I_l2000(2,k) = 0.D0 dl2_I_l2000(3,k) = 0.D0 C C C Compute delay and rate partials w.r.t. the various parameters C If (k .eq. 1) xsign = 1.D0 If (k .eq. 2) xsign = -1.D0 C C h2 delay terms DETDP9(k,1,1) = xsign * DOTP(h2_R_s(1,k),STAR)/VLIGHT DETDP9(k,2,1) = xsign * DOTP(h2_I_s(1,k),STAR)/VLIGHT DETDP9(k,1,2) = xsign * DOTP(h2_R_d(1,k),STAR)/VLIGHT DETDP9(k,2,2) = xsign * DOTP(h2_I_d(1,k),STAR)/VLIGHT DETDP9(k,1,3) = xsign * DOTP(h2_R_l(1,k),STAR)/VLIGHT DETDP9(k,2,3) = 0.D0 C C l2 delay terms DETDP9(k,3,1) = xsign * DOTP(l2_R_s2000(1,k),STAR)/VLIGHT DETDP9(k,4,1) = xsign * DOTP(l2_I_s2000(1,k),STAR)/VLIGHT DETDP9(k,3,2) = xsign * DOTP(l2_R_d2000(1,k),STAR)/VLIGHT DETDP9(k,4,2) = xsign * DOTP(l2_I_d2000(1,k),STAR)/VLIGHT DETDP9(k,3,3) = xsign * DOTP(l2_R_l2000(1,k),STAR)/VLIGHT DETDP9(k,4,3) = 0.D0 C C h2 rate terms DETDP9(k,1,4) = xsign * DOTP(dh2_R_s(1,k),STAR)/VLIGHT DETDP9(k,2,4) = xsign * DOTP(dh2_I_s(1,k),STAR)/VLIGHT DETDP9(k,1,5) = xsign * DOTP(dh2_R_d(1,k),STAR)/VLIGHT DETDP9(k,2,5) = xsign * DOTP(dh2_I_d(1,k),STAR)/VLIGHT DETDP9(k,1,6) = xsign * DOTP(dh2_R_l(1,k),STAR)/VLIGHT DETDP9(k,2,6) = 0.D0 C C l2 rate terms DETDP9(k,3,4) = xsign * DOTP(dl2_R_s2000(1,k),STAR)/VLIGHT DETDP9(k,4,4) = xsign * DOTP(dl2_I_s2000(1,k),STAR)/VLIGHT DETDP9(k,3,5) = xsign * DOTP(dl2_R_d2000(1,k),STAR)/VLIGHT DETDP9(k,4,5) = xsign * DOTP(dl2_I_d2000(1,k),STAR)/VLIGHT DETDP9(k,3,6) = xsign * DOTP(dl2_R_l2000(1,k),STAR)/VLIGHT DETDP9(k,4,6) = 0.D0 C 1212 CONTINUE C C*********************************************************************** C Check for debug output If (KETDD .ne. 0) Then write(6,'(/," Dump for site #",i1)') K write(6,8)' SITLAT(k), SITLON(k) ', SITLAT(k), SITLON(k) write(6,8)' GEO_LAT(k) ', GEO_LAT(k) write(6,8)' r_vec ', r_vec write(6,8)' dr_vec ', dr_vec write(6,8)' r_mag, dr_mag', r_mag, dr_mag write(6,8)' r_hat ', r_hat write(6,8)' dr_hat ', dr_hat write(6,8)' Rmoon_dot_r, dRmoon_dot_r ',Rmoon_dot_r,dRmoon_dot_r write(6,8)' Rsun_dot_r, dRsun_dot_r ',Rsun_dot_r,dRsun_dot_r write(6,8)' k, Phi(k): ', k, Phi(k) write(6,8)' CLLMoon, SLLMoon ',CLLMoon,dCLLMoon,SLLMoon,dSLLMoon write(6,8)' C2LLMoon, S2LLMoon ', C2LLMoon, dC2LLMoon, * S2LLMoon, dS2LLMoon write(6,8)' CLLSun, SLLSun ', CLLSun, dCLLSun, SLLSun, dSLLSun write(6,8)' C2LLSun, S2LLSun ',C2LLSun,dC2LLSun,S2LLSun,dS2LLSun write(6,8)' CPhi, SPhi ', CPhi, SPhi write(6,8)' C2Phi, S2Phi ', C2Phi, S2Phi write(6,8)' CsqPhi, SsqPhi ', CsqPhi, SsqPhi write(6,8)' term1M, dterm1M ', term1M, dterm1M write(6,8)' term2, dterm2 ', term2, dterm2 write(6,8)' term3M, dterm3M ', term3M, dterm3M write(6,8)' term4M, dterm4M ', term4M, dterm4M write(6,8)' term5M, dterm5M ', term5M, dterm5M write(6,8)' term1M_2, dterm1M_2 ', term1M_2, dterm1M_2 write(6,8)' term1S, dterm1S ', term1S, dterm1S write(6,8)' term3S, dterm3S ', term3S, dterm3S write(6,8)' term4S, dterm4S ', term4S, dterm4S write(6,8)' term5S, dterm5S ', term5S, dterm5S write(6,8)' term1S_2, dterm1S_2 ', term1S_2, dterm1S_2 write(6,8)' delta_r2 ', delta_r2(1,k), delta_r2(2,k), * delta_r2(3,k) write(6,8)' ddelta_r2 ', ddelta_r2(1,k),ddelta_r2(2,k), * ddelta_r2(3,k) write(6,8)' term01M, dterm01M ', term01M, dterm01M write(6,8)' term02, dterm02 ', term02, dterm02 write(6,8)' term03M, dterm03M ', term03M, dterm03M write(6,8)' term04M, dterm04M ', term04M, dterm04M write(6,8)' term05M, dterm05M ', term05M, dterm05M write(6,8)' delta_r3 ', delta_r3(1,k),delta_r3(2,k), * delta_r3(3,k) write(6,8)' ddelta_r3 ', ddelta_r3(1,k),ddelta_r3(2,k), * ddelta_r3(3,k) write(6,8)' P12_moon, dP12_moon ', P12_moon, dP12_moon write(6,8)' P22_moon, dP22_moon ', P22_moon, dP22_moon write(6,8)' P12_sun, dP12_sun ', P12_sun, dP12_sun write(6,8)' P22_sun, dP22_sun ', P22_sun, dP22_sun write(6,8)' topo11 ', topo11(1,k),topo11(2,k),topo11(3,k) write(6,8)' dtopo11 ', dtopo11(1,k),dtopo11(2,k),dtopo11(3,k) write(6,8)' delta11 ', delta11(1,k),delta11(2,k),delta11(3,k) write(6,8)' ddelta11 ',ddelta11(1,k),ddelta11(2,k),ddelta11(3,k) write(6,8)' topo12 ', topo12(1,k), topo12(2,k),topo12(3,k) write(6,8)' dtopo12 ', dtopo12(1,k),dtopo12(2,k),dtopo12(3,k) write(6,8)' delta12 ', delta12(1,k),delta12(2,k),delta12(3,k) write(6,8)' ddelta12 ',ddelta12(1,k),ddelta12(2,k),ddelta12(3,k) write(6,8)' topo13 ',topo13(1,k),topo13(2,k),topo13(3,k) write(6,8)' dtopo13 ', dtopo13(1,k),dtopo13(2,k),dtopo13(3,k) write(6,8)' delta13 ', delta13(1,k),delta13(2,k),delta13(3,k) write(6,8)' ddelta13 ',ddelta13(1,k),ddelta13(2,k),ddelta13(3,k) write(6,8)' topo14 ', topo14(1,k), topo14(2,k), topo14(3,k) write(6,8)' dtopo14 ', dtopo14(1,k),dtopo14(2,k),dtopo14(3,k) write(6,8)' delta14 ', delta14(1,k),delta14(2,k),delta14(3,k) write(6,8)' ddelta14 ',ddelta14(1,k),ddelta14(2,k),ddelta14(3,k) write(6,'(" theta15: ",7f12.8,/,10x,4f12.8)') theta15 write(6,'(" dtheta15: ",7f12.9,/,10x,4f12.9)') dtheta15 write(6,8)' topo15 ', topo15(1,k),topo15(2,k),topo15(3,k) write(6,8)' dtopo15 ', dtopo15(1,k),dtopo15(2,k),dtopo15(3,k) write(6,8)' delta15 ', delta15(1,k),delta15(2,k),delta15(3,k) write(6,8)' ddelta15 ',ddelta15(1,k),ddelta15(2,k),ddelta15(3,k) write(6,'(" theta16: ",5f12.8)') theta16 write(6,'(" dtheta16: ",5f12.9)') dtheta16 write(6,8)' topo16 ', topo16(1,k),topo16(2,k),topo16(3,k) write(6,8)' dtopo16 ', dtopo16(1,k),dtopo16(2,k),dtopo16(3,k) write(6,8)' delta16 ', delta16(1,k),delta16(2,k),delta16(3,k) write(6,8)' ddelta16 ',ddelta16(1,k),ddelta16(2,k),ddelta16(3,k) print *, 'T17A,h_sub_2,T17B,l_sub_2 ',T17A,h_sub_2,T17B,l_sub_2 write(6,8)' topo17 ', topo17(1,k),topo17(2,k),topo17(3,k) write(6,8)' delta17 ', delta17(1,k),delta17(2,k),delta17(3,k) write(6,8)'ddelta17 ', ddelta17(1,k),ddelta17(2,k),ddelta17(3,k) Write(6,8) ' h2_R_s ', ( h2_R_s(kk,k), kk=1,3) Write(6,8) ' dh2_R_s ', (dh2_R_s(kk,k), kk=1,3) Write(6,8) ' h2_I_s ', ( h2_I_s(kk,k), kk=1,3) Write(6,8) ' dh2_I_s ', (dh2_I_s(kk,k), kk=1,3) Write(6,8) ' h2_R_d ', ( h2_R_d(kk,k), kk=1,3) Write(6,8) ' dh2_R_d ', (dh2_R_d(kk,k), kk=1,3) Write(6,8) ' h2_I_d ', ( h2_I_d(kk,k), kk=1,3) Write(6,8) ' dh2_I_d ', (dh2_I_d(kk,k), kk=1,3) Write(6,8) ' h2_R_l ', ( h2_R_l(kk,k), kk=1,3) Write(6,8) ' dh2_R_l ', (dh2_R_l(kk,k), kk=1,3) Write(6,8) ' l2_R_s ', ( l2_R_s(kk,k), kk=1,3) Write(6,8) ' dl2_R_s ', (dl2_R_s(kk,k), kk=1,3) Write(6,8) ' l2_I_s ', ( l2_I_s(kk,k), kk=1,3) Write(6,8) ' dl2_I_s ', (dl2_I_s(kk,k), kk=1,3) Write(6,8) ' l2_R_d ', ( l2_R_d(kk,k), kk=1,3) Write(6,8) ' dl2_R_d ', (dl2_R_d(kk,k), kk=1,3) Write(6,8) ' l2_I_d ', ( l2_I_d(kk,k), kk=1,3) Write(6,8) ' dl2_I_d ', (dl2_I_d(kk,k), kk=1,3) Write(6,8) ' l2_R_l ', ( l2_R_l(kk,k), kk=1,3) Write(6,8) ' dl2_R_l ', (dl2_R_l(kk,k), kk=1,3) Write(6,8) ' h2_R_s, dh2_R_s ', DETDP9(k,1,1),DETDP9(k,1,4) Write(6,8) ' h2_I_s, dh2_I_s ', DETDP9(k,2,1),DETDP9(k,2,4) Write(6,8) ' h2_R_d, dh2_R_d ', DETDP9(k,1,2),DETDP9(k,1,5) Write(6,8) ' h2_I_d, dh2_I_d ', DETDP9(k,2,2),DETDP9(k,2,5) Write(6,8) ' h2_R_l, dh2_R_l ', DETDP9(k,1,3),DETDP9(k,1,6) Write(6,8) ' h2_I_l, dh2_I_l ', DETDP9(k,2,3),DETDP9(k,2,6) Write(6,8) ' l2_R_s, dl2_R_s ', DETDP9(k,3,1),DETDP9(k,3,4) Write(6,8) ' l2_I_s, dl2_I_s ', DETDP9(k,4,1),DETDP9(k,4,4) Write(6,8) ' l2_R_d, dl2_R_d ', DETDP9(k,3,2),DETDP9(k,3,5) Write(6,8) ' l2_I_d, dl2_I_d ', DETDP9(k,4,2),DETDP9(k,4,5) Write(6,8) ' l2_R_l, dl2_R_l ', DETDP9(k,3,3),DETDP9(k,3,6) Write(6,8) ' l2_I_l, dl2_I_l ', DETDP9(k,4,3),DETDP9(k,4,6) C Endif C C Close loop over sites 100 Continue Enddo !Loop over sites C If (KETDD .ne. 0) Then write (6, 9201) TIDEP, TIDEV 9201 FORMAT (1X, "TIDEP = ", 2 ( 3 ( D30.16, 10X ), /, 1X ), 1 "TIDEV = ", 2 ( 3 ( D30.16, 10X ), /, 1X ) ) Endif C 8 FORMAT(A,4D25.16/(7X,5D25.16)) C 1500 Continue C C Compute the old Calc 8.2 Earth tide values IF (Calc_user .eq. 'A' .or. Use_tide .ne. 'RC') THEN CALL ETDC8 (R2000, SITLAT, SITLON, SUN, TCTOCF, USITEP, * USITEV, XMOON, EARTH, GAST, STAR, fa, fad, cent, * KAXIS, TD82P, TD82V) C If (Calc_user .eq. 'C') Then Do k=1,2 Do kk=1,3 TIDEP(kk,k) = TD82P(kk,k) TIDEV(kk,k) = TD82V(kk,k) Enddo Enddo Endif C ENDIF C C Normal program conclusion. RETURN END C C****************************************************************************** SUBROUTINE ETDP ( R2000, SITLAT, STAR, TCTOCF ) IMPLICIT None C C ETDP is the Earth Tide Module partial derivatives section. It calculates C the partial derivatives of the delay and rate with respect to site C dependent Earth tide parameters. C C References: Markham's X-document C C ETDP Program Interface: C C Calling sequence - C C Input variables: C 1. R2000(3,3,3) - The complete crust fixed to J2000 rotation C matrix and its first two CT time derivatives. C (unitless, 1/sec, 1/sec**2) C 2. SITLAT(2) - The site geodetic latitudes. (RAD) C 3. STAR(3) - The J2000.0 source unit vector. (unitless) C 4. TCTOCF(3,3,2) - The rotation matrix which rotates the C topocentric reference system to the crust C fixed reference system at each site. C C Common blocks used: C INCLUDE 'cphys.i' C Variables 'from': C 1. VLIGHT - The vacuum velocity of light. (M/SEC) C Real*8 DETDP9(2,4,6) COMMON / ETDCM / DETDP9 C 1. DETDP9(2,4,6) - The partial derivatives of the delay and rate C with respect to the site dependent Earth tide C parameters, as defined in John Gipson's Sept. 8, C 1998 memo. C The first index runs over the observing sites. C The second index runs over the two Love numbers AND C their real and imaginary parts. C 1 => h2, Real C 2 => h2, Imaginary C 3 => l2, Real C 4 => h2, Imaginary C The third index runs over the 3 principal bands, C AND the delay and rate. C 1 => semi-diurnal, Delay C 2 => diurnal, Delay C 3 => long period, Delay C 4 => semi-diurnal, Rate C 5 => diurnal, Rate C INCLUDE 'ccon.i' C Variables 'from': C 1. KETDC - The module flow control flag. C = 0 => Default, IERS 1996 Earth Tide Model C = 1 => Earth tide model OFF, no corrections computed C 2. KETDD - The debug output flag. C INCLUDE 'cuser.i' C 1. Calc_user - Analysis center or Correlator user C C Program specifications - Real*8 R2000(3,3,3), SITLAT(2), STAR(3), TCTOCF(3,3,2) Integer*4 I, J, K, L C C Database access: C 'PUT' Variables: C 1. DETDP9(2,4,6) - The partial derivatives of the delay and rate C with respect to the site dependent Earth tide C parameters. See above description. C Access codes: C 1. 'ETJMGPAR' - The database access code for the 1996 IERS C Earth tide partial derivatives array. C C Subroutine Interface: C Caller subroutines: DRIVP C Called subroutines: PUT4 C C 5.2.9 PROGRAMMER - DALE MARKHAM 01/13/77 C PETER DENATALE 07/12/77 C BRUCE SCHUPLER 03/24/78 C BRUCE SCHUPLER 11/02/78 C Jim Ryan 89.06.29 Character strings and clean up. C Jim Ryan 89:10:05 CPHYS common made an include file. C Jim Ryan 89.12.12 UNIX-like database interface C implimented. C Jim Ryan 90.01.20 Documentation of the partials array C fixed. C David Gordon 93NOV23 Modified for IERS Earth tides. C David Gordon 94.04.06 Changed to 'Implicit None' C David Gordon 94.04.27 New common block 'tide_stuff'. C David Gordon 98.06.24 Obsolete code removed. New Puts C for 1996 IERS model. C David Gordon 98.09.30 Increased dimensions on PUT4 of C partial derivatives (ETJMGPAR). C David Gordon 98.01.06 Return immediately if Correlator. C C ETDP Program Structure C C Skip if correlator IF (Calc_user .eq. 'C') Return C C Use IERS 1996 model IF (KETDC.eq.0) THEN C Partials already computed in ETDG, PUT them into the database. CALL PUT4 ('ETJMGPAR ', DETDP9, 2, 4, 6 ) ENDIF C C Check KETDC to determine if the Earth tide module is to be off. IF (KETDC .eq. 1) Then DO i = 1,2 DO j = 1,4 DO k = 1,6 DETDP9(i,j,k) = 0.D0 enddo enddo enddo C PUT the partials into the database. CALL PUT4 ('ETJMGPAR ', DETDP9, 2, 4, 6 ) Endif C 8 FORMAT(A,4D25.16/(7X,5D25.16)) 9100 FORMAT (1X, "Debug output for subroutine ETDP " ) C C Normal conclusion. RETURN END C C****************************************************************************** SUBROUTINE ETDC ( TIDEP, TIDEV, STAR ) IMPLICIT None C C ETDC is the Earth Tide Module contribution section. It computes the C contributions to the delay and rate due to Earth tide effects. C C References: Markham's X-document. C C ETDC Program Interface: C C Calling sequence - C Input variables: C 1. TIDEP(3,2) - The corrections to the J2000 geocentric site C position due to Earth tidal effects at each site. C (M) C 2. TIDEV(3,2) - The corrections to the J2000.0 geocentric site C velocity vectors due to Earth tidal effects at C each site. (M/SEC) C 3. STAR(3) - The J2000.0 source unit vector. (unitless) C C Common blocks used: C INCLUDE 'cphys.i' C Variables 'from': C 1. VLIGHT - The vacuum velocity of light. (m/sec) C INCLUDE 'ccon.i' C Variables 'from': C 1. KETDC - The module flow control flag. C = 0 => Default, IERS 1996 Earth Tide Model C = 1 => Earth tide model OFF, no corrections computed C 2. KETDD - The debug output flag. C INCLUDE 'cuser.i' C 1. Calc_user - Analysis center or Correlator user C Real*8 TD82P(3,2), TD82V(3,2), ELASP(3,2), ELASV(3,2) Common /TIDE8/ TD82P, TD82V, ELASP, ELASV C C Program specifications: Real*8 DOTP, BASCOR(3,2), TIDEP(3,2), TIDEV(3,2), DETDC(2),STAR(3) Real*8 C8CORP(3,2), C8CORV(3,2), C8BCOR(3,2), D8ETDC(2), * ELASCOR(3,2), ELASETC(2) Integer*4 K C C Database access: C 'PUT' Variables: C 1. DETDC(2) - The total Earth tide contribution to the delay and C rate. Value depends on the value of KETDC. Default C is the IERS model (second order and K1 terms). C Access codes: C 1. 'ETD CONT' - Database access code for the contributions. C C External input/output - Possible debug output. C C Subroutine Interface: C Caller subroutines: DRIVC C Called subroutines: DOTP, PUT4, VECSB C C Constants used: VLIGHT C C Program variables: C 1. BASCOR(3,2) - The correction to the J2000 baseline position and C velocity vectors due to Earth tidal effects. C (M, M/SEC) C C 6.2.9 PROGRAMMER - DALE MARKHAM 01/13/77 C PETER DENATALE 07/12/77 C Jim Ryan 89.06.29 Character strings and clean up. C Jim Ryan 89:10:05 CPHYS common made an include file. C Jim Ryan 89.12.12 UNIX-like database interface C implimented. C David Gordon 94.01.24 Third order tide remover C contribution added. C David Gordon 94.04.06 Changed to 'Implicit None'. Vertical C Love # dependent terms added to IERS 'excess' C correction term and that Lcode renamed C 'ETD IERS'. C David Gordon 94.04.27 New common block 'tide_stuff'. C David Gordon 94.04.28 Change due to Love # difference added C to 'ETD IERS'. Computations and PUT4's for C 'ETD3CONT', 'ETDKCONT', and 'ETD2CONT' added. C David Gordon 94.08.25 IERS made default. delta_IERS, C dtide_IERS, and other unused variables C removed. Documentation expanded and corrected. C David Gordon 98.06.24 Obsolete code for Calc 8.x C contributions removed. C David Gordon 98.01.06 Added PUT's of corrections to use C old Calc 8.x Earth tide ('C82ETCON') and C correction to change anelastic case to C elastic case ('ELASTCON'); skipped if C Correlator. C C ETDC Program Structure. C C Compute the contributions. C C Compute the corrections to the J2000.0 baseline position and C velocity vectors due to Earth tidal effects. CALL VECSB ( TIDEP(1,1), TIDEP(1,2), BASCOR(1,1) ) CALL VECSB ( TIDEV(1,1), TIDEV(1,2), BASCOR(1,2) ) C C Complete the calculation of the contributions. DO K = 1,2 DETDC(K) = DOTP ( BASCOR(1,K), STAR ) / VLIGHT ENDDO C C PUT the Earth tide contributions. CALL PUT4 ('ETD CONT ', DETDC, 2, 1, 1 ) C C Skip rest if Correlator IF (Calc_user .eq. 'C') RETURN C C Compute correction to get the old Calc 8.2 Earth tides: CALL VECSB ( TD82P(1,1), TIDEP(1,1), C8CORP(1,1) ) CALL VECSB ( TD82P(1,2), TIDEP(1,2), C8CORP(1,2) ) CALL VECSB ( TD82V(1,1), TIDEV(1,1), C8CORV(1,1) ) CALL VECSB ( TD82V(1,2), TIDEV(1,2), C8CORV(1,2) ) CALL VECSB ( C8CORP(1,1),C8CORP(1,2),C8BCOR(1,1) ) CALL VECSB ( C8CORV(1,1),C8CORV(1,2),C8BCOR(1,2) ) DO K = 1,2 D8ETDC(K) = DOTP ( C8BCOR(1,K), STAR ) / VLIGHT ENDDO C C PUT the Calc 8.2 Earth tide difference contributions. CALL PUT4 ('C82ETCON ', D8ETDC, 2, 1, 1 ) C C Corrections to convert from anelastic to alastic case CALL VECSB ( ELASP(1,1),ELASP(1,2),ELASCOR(1,1) ) CALL VECSB ( ELASV(1,1),ELASV(1,2),ELASCOR(1,2) ) DO K = 1,2 ELASETC(K) = DOTP (ELASCOR(1,K), STAR ) / VLIGHT ENDDO C C PUT the Elastic Earth tide difference contributions. CALL PUT4 ('ELASTCON ',ELASETC, 2, 1, 1 ) C C Check KETDD for debug output. IF ( KETDD .ne. 0 ) Then ! Debug output WRITE ( 6, 9100 ) 9100 FORMAT (1X, "Debug output for subroutine ETDC." ) 8 FORMAT(A,4D25.16/(7X,5D25.16)) WRITE(6,8)' BASCOR',BASCOR WRITE(6,8)' DETDC ',DETDC WRITE(6,8)' VLIGHT',VLIGHT WRITE ( 6, 9200 ) TIDEP, TIDEV, STAR 9200 FORMAT (1X, "TIDEP = ", 2 ( 3 ( D30.16, 10X ), /, 1X ), 1 "TIDEV = ", 2 ( 3 ( D30.16, 10X ), /, 1X ), 2 "STAR = ", 3 ( D30.16, 10X ) ) ENDIF ! Debug output C C Normal conclusion. RETURN END C C***************************************************************************** SUBROUTINE ETDC8 ( R2000, SITLAT, 1 SITLON, SUN, TCTOCF, USITEP, USITEV, XMOON, EARTH, 2 GAST, STAR, fa, fad, cent, KAXIS, TD82P, TD82V ) IMPLICIT None C C ETDC8 calculates the Earth tide effects using the older Calc 8.2 model. C It includes the second order tide, the K1 tide, and the third order C tide components. A correction Lcode ('C82ETDCON') is written out in C ETDC that, when added to the theoretical, will efectively convert it C to the Calc 8.x equivalent. C C Reference: IERS Technical Note 13, IERS Standards (1992); D.D. C McCarthy, Editor; page 57, equations 6 and 7. C C ETDC8 Program Interface: C C Calling sequence: C C INPUT VARIABLES: C 1. R2000(3,3,3) - The complete crust fixed to J2000.0 rotation C matrix and its first two CT time derivatives. C (unitless, 1/sec, 1/sec**2) C 2. SITLAT(2) - The geodetic latitude of each site. (RAD) C 3. SITLON(2) - The longitude of each site. (RAD) C 4. SUN(3,2) - The J2000.0 geocentric Sun position and C velocity vectors. (M, M/SEC) C 5. TCTOCF(3,3,2)- The rotation matrix which rotates the C topocentric reference system to the crust C fixed reference system at each site. (unitless) C 6. USITEP(3,2) - The J2000.0 geocentric site position vectors C uncorrected for Earth tidal effects. (M) C 7. USITEV(3,2) - The J2000.0 geocentric site velocity vectors C uncorrected for Earth tidal effects. (M/SEC) C 8. XMOON(3,2) - The J2000.0 geocentric Moon position and C velocity vectors. (M, M/SEC) C 9. EARTH(3,3) - The solar system barycentric Earth position, C velocity, and acceleration vectors. The first C index runs over the vector components and the C second runs over the time derivatives. C (m, m/sec, m/sec**2) C 10. GAST(2) - The Greenwich Apparent Siderial time and its C CT time derivative. (RAD, RAD/SEC) C 11. STAR(3) - The J2000.0 source unit vector. C 12. fa(5) - The fundamental arguments (arcsec) C 13. fad(5) - The CT time derivatives of the fundamental C arguments. (arcsec/century) C 14. cent - The number of Julian centuries elapsed since the C epoch January 1.5, 2000. (centuries) C C OUTPUT VARIABLES: C 1. TD82P(3,2) - The corrections to the J2000.0 geocentric site C position vectors due to Earth tidal effects at C each site. (M) C 2. TD82V(3,2) - The corrections to the J2000.0 geocentric site C velocity vectors due to Earth tidal effects at C each site. (M/SEC) C C Common blocks used: C INCLUDE 'cphys.i' C Variables 'from': C 2. GMMOON - The mass of the Moon multiplied by the Universal C gravitational constant. (M**3/SEC**2) C 3. GMSUN - The mass of the Sun multiplied by the Universal C Gravitational constant. (M**3/SEC**2) C 4. GMEARTH - The mass of the Earth multiplied by the Universal C Gravitational constant. (M**3/SEC**2) C 5. REARTH - The equatorial radius of the Earth. (meters) C Real*8 delta_r2(3,2), ddelta_r2(3,2), delta_r3(3,2), . ddelta_r3(3,2), XK1P(3,2), XK1V(3,2) C 1. delta_r2(3,2) - The second order tidal displacement at each site, C computed using the IERS Standards (1992) formula. First index C runs over X,Y,Z; second runs over sites. (meters) C 2. ddelta_r2(3,2) - Time derivative of above, second order tidal velocity C at each site. First index runs over X,Y,Z; second runs over sites. C (m/sec) C 3. delta_r3(3,2) - The third order tidal displacement at each site, C from the new Gipson formulation. First index runs over X,Y,Z; C second runs over sites. (meters) C 4. ddelta_r3(3,2) - Time derivative of above, third order tidal velocity. C First index runs over X,Y,Z; second runs over sites. (m/sec) C 5. XK1P(3,2) - The IERS vertical K1 term rotated to J2000. First index C runs over X,Y,Z; second runs over sites. (meters) C 6. XK1V(3,2) - Time derivative of above. (meters/sec) C Real*8 XLOVEH, XLOVEL C 2. XLOVEH - The global Love Number H (IERS value). (unitless) C 3. XLOVEL - The global Love Number L (IERS value). (unitless) C INCLUDE 'ccon.i' C VARIABLES 'FROM': C 2. KETDD - The debug output flag. C COMMON /CMATH/ PI, TWOPI, HALFPI, CONVD, CONVDS, CONVHS, SECDAY Real*8 PI, TWOPI, HALFPI, CONVD, CONVDS, CONVHS, SECDAY C Variables "From": C 1. PI - THE MATHEMATICAL CONSTANT PI (UNITLESS) C 2. TWOPI - PI * 2.0D0 (UNITLESS) C 3. HALFPI - PI / 2.0D0 (UNITLESS) C 4. CONVD - THE CONVERSION FACTOR FROM DEGREES TO RADIANS (RAD/DEG) C 5. CONVDS - THE CONVERSION FACTOR FROM ARCSECONDS TO RADIANS C (RAD/ARCSECOND) C 6. CONVHS - THE CONVERSION FACTOR FROM TIME SECONDS TO RADIANS C (RADIANS / TIME SECOND) C 7. SECDAY - THE NUMBER OF TIME SECONDS PER DAY (SECONDS / DAY) C INCLUDE 'cobsn.i' C Variables from: C 1. Nzero - Set to 1 or 2 if station 1 or 2 is at the geocenter, C otherwise equals zero. For correlator usage. C C Program specifications: C Real*8 CFDIS(3,2), CFVEL(3,2), R2000(3,3,3), SITLAT(2), SUN(3,2), 6 TCTOCF(3,3,2), TD82P(3,2), TD82V(3,2), 7 USITEP(3,2), USITEV(3,2), XMOON(3,2), 8 SITLON(2), GAST(2), TCK1(3,2), TCK1V(3,2), STAR(3), 9 EARTH(3,3), fa(5), fad(5), cent Real*8 Vecmg, Dotp, TCK Real*8 r_vec(3),dr_vec(3), r_mag,dr_mag, r_hat(3),dr_hat(3), 1 Rmoon(3),dRmoon(3), Rmoon_mag, dRmoon_mag, 2 Rmoon_hat(3),dRmoon_hat(3), Rmoon_dot_r,dRmoon_dot_r, 3 Rsun(3),dRsun(3), Rsun_mag,dRsun_mag, 4 Rsun_hat(3),dRsun_hat(3), Rsun_dot_r,dRsun_dot_r, 5 term1M,dterm1M, term2,dterm2, term3M,dterm3M, 6 term4M,dterm4M, term1M_2,dterm1M_2, term1S,dterm1S, 7 term3S,dterm3S, term4S,dterm4S, term1S_2,dterm1S_2 Real*8 CFK1P(3,2), CFK1V(3,2), XK1V1(3,2), XK1V2(3,2) Real*8 term5M, dterm5M, term6, dterm6, term7aM, dterm7aM, . term7bM, dterm7bM, term7M, dterm7M, term8M, dterm8M, . term9M, dterm9M, term789M(3), dterm789M(3) Real*8 term5S, dterm5S, term7aS, dterm7aS, . term7bS, dterm7bS, term7S, dterm7S, term8S, dterm8S, . term9S, dterm9S, term789S(3), dterm789S(3) Real*8 geo_lat(2) Real*8 l3, h3 Integer*2 KAXIS(2) Save l3, h3, XLOVEH, XLOVEL Data h3 /.2900D0/ Data l3 /.0152D0/ Data XLOVEH /.6090D0/ Data XLOVEL /.0852D0/ C Integer*4 ll, kk, k, L, J, I C C External input/output - Possible debug output. C C Subroutine Interface: C Caller subroutines: DRIVG C Called subroutines: DCOS, DOTP, ROTATE, VECAD, VECRT, VECMG, VECSB C C Constants used: ACCGRV, GMASS(2), XLAG, XLOVEH, XLOVEL, ESQUAR, GRVLAT, C GMMOON, GMSUN, GMEARTH, REARTH C C Program variables: C 1. Rmoon(3), Rsun(3), dRmoon(3), dRsun(3) - Geocentric position and C velocity vectors of the Moon and the Sun. (m, m, m/s, m/s) C 2. Rmoon_mag, dRmoon_mag, Rsun_mag, dRsun_mag - Magnitude of geocentric C vectors and their derivatives. (m, m, m/s, m/s) C 3. Rmoon_hat(3), Rsun_hat(3), dRmoon_hat(3), dRsun_hat(3) - Geocentric C unit vectors and their derivatives. (unitless) C 4. r_vec(3), dr_vec(3) - Geocentric position and velocity of current C site. (m, m/s) C 5. r_mag, dr_mag - Magnitude of geocentric site vector and its C derivative. (m, m/s) C 6. r_hat(3), dr_hat(3) - Geocentric unit vector of current site and C its derivative. (unitless) C 7. Rmoon_dot_r, dRmoon_dot_r, Rsun_dot_r, dRsun_dot_r - Dot products of C Moon/Sun unit vectors with site unit vector and their derivatives. C 8. term---, dterm--- - terms used for the second and third order tide C and partials computations, too numerous to mention individually. C 9. delta_r2(3,2)-The second order tidal displacement at each site. First C index is X,Y,Z. Second index runs over sites. (m) C 10. ddelta_r2(3,2)-The second order tidal velocity at each site. First C index is X,Y,Z. Second index runs over sites. (m/s) C 11. pRm_hat(3), pRs_hat(3), dpRm_hat(3), dpRs_hat(3) - Partials of C Rmoon_hat and Rsun_hat with respect to lag angle and derivatives. C 12. P_moon, P_sun, dP_moon, dP_sun - Partials of Rmoon_dot_r and C Rsun_dot_r with respect to lag angle, and their derivatives. C 13. delta_r_dL(3,2), ddelta_r_dL(3,2) - Partial derivatives of tidal C displacement with respect to XLOVEL (l2). C 14. delta_r_dH(3,2), ddelta_r_dH(3,2) - Partial derivatives of tidal C displacement with respect to XLOVEH (h2). C 15. delta_r_dLag(3,2), ddelta_r_dLag(3,2) - Partial derivatives of tidal C displacement with respect to a lag angle. C 16. delta_r(3,2)-Sum of the second and third order tidal displacements. C First index is X,Y,Z. Second index runs over sites. C 17. ddelta_r(3,2)-Sum of the second and third order tidal velocities. C First index is X,Y,Z. Second index runs over sites. C 25. TCK1(3,2) - The topocentric Earth crustal displacements at each site C due to the IERS K1 displacement term. (m) C 26. TCK1V(3,2) - The topocentric Earth crustal velocities at each site C due to the IERS K1 displacement term. (m/sec) C 29. TCK1_alt(3,2) - The total topocentric Earth crustal displacements at C each site due to the six frequency dependent Love number C correction terms of the Gipson/Mathews model. (m) C 30. TCK1V_alt(3,2) - The total topocentric Earth crustal velocities at C each site due to the six frequency dependent Love number C correction terms of the Gipson/Mathews model. Derivative of above. C (m/sec) C 31. geo_lat(2) - The geocentric latitude of each site. (RAD) C C 4.2.9 PROGRAMMER - DALE MARKHAM 01/13/77 C PETER DENATALE 07/12/77 C BRUCE SCHUPLER 03/24/78 C BRUCE SCHUPLER 11/02/78 C BRUCE SCHUPLER 01/14/80 C DAVID GORDON 07/20/84 C Jim Ryan 89.06.29 Character strings and clean up. C Jim Ryan 89:10:05 CPHYS common made an include file. C David Gordon 93Oct/Nov. Added IERS tide computation, C restructured subroutine, new KETDC options. C David Gordon 94.01.24 Third order tide components added. C David Gordon 94.01.27 Partials with respect to lag angle C added. C David Gordon 94.04.05 Coding added to compute the six C frequency dependent Love number correction C vertical terms (K1, O1, P1, Psi, and 2 C unnamed terms). New terms will replace old C K1 term in IERS tide computation (default). C K1 left in old tide option. C David Gordon 94.04.06 Changed to 'Implicit None' C David Gordon 94.04.27 New common block 'tide_stuff'. C David Gordon 94.04.28 Term for change in Love/Shida #'s C (r2_IERS) added. Separate terms kept for C all non "pure" IERS contributions. C David Gordon 94.05.23 Removed second dimensioning of XK1V. C David Gordon 94.07.11 Changed absolute value of geocentric C site radius to Earth's equatorial radius C (REARTH) in second and third order tide C computation. Added change to second order C term to IERS-restorer variable. Reference C is Sonny Mathews via John Gipson. C David Gordon 94.08.09 Changed Love numbers for C Gipson/Mathews tides. Changed amplitudes for C O1, P1, K1, Psi, ... terms. John Gipson C Aug. 9, 1994 memo (reference #7 above). C David Gordon 94.08.25 Changed default back to IERS C Standards. Three correction terms kept to C convert to Gipson/Mathews Earth tide model. C David Gordon 96.01.10 Changing geodetic latitude to C geocentric latitude for computation of K1 C and K1-plus tide corrections. C David Gordon 96.02.07 Changing 2 arguments (signs C reversed) in Tide_arg and 3 amplitudes in C Tide_val. See 96Feb06 J. Gipson memo. C David Gordon June 1998 - Made into separate subroutine. C Removed obsolete variables, etc. C David Gordon 98.01.06 Put back into Calc 9, but removed C all but the second order, third order, and C K1 computations. C David Gordon 98.01.25 A few corrections found by John C Benson, NRAO/VLBA. C James M Anderson 2012.03.13 Corrections for spacecraft C**************************************************************************** C ETDC8 PROGRAM STRUCTURE C C The Earth tide geometry for site #1 and site #2 are calculated C separately by running twice through a loop. There are two formulations C for computing the Earth tides. The first uses the IERS Standards (1992) C model. Corrections are computed to convert the IERS tide model to the C Gipson/Mathews model, which uses a) different second order Love numbers C and the Earth's equatorial radius in the second order expansion; b) has a C third order term (see first John Gipson memo); and c) uses 6 frequency C dependent vertical terms (O1, P1, K1, etc) in place of a single K1 term C (see second John Gipson memo). The second Earth tide formulation uses the C old Calc (versions 7.6 and earlier) computation (with the IERS K1 term). C The default is to use the new IERS formula. C C ************************** STEP 1 ************************** C C IERS second order Earth tide computation, equation (6), page 57, IERS C Technical Note 13, IERS Standards (1992). C C Vectors from the geocenter to the Moon and the Sun and their derivatives Do kk=1,3 Rmoon(kk) = XMOON(kk,1) dRmoon(kk) = XMOON(kk,2) Rsun(kk) = SUN(kk,1) dRsun(kk) = SUN(kk,2) Enddo C C Magnitude of vector from geocenter to the Moon and its derivative Rmoon_mag = vecmg(Rmoon) dRmoon_mag = Dotp(Rmoon,dRmoon)/Rmoon_mag C C Magnitude of vector from geocenter to the Sun and its derivative Rsun_mag = vecmg(Rsun) dRsun_mag = Dotp(Rsun,dRsun)/Rsun_mag C C Unit vectors from geocenter to the Moon and Sun and their derivatives call vunit(Rmoon,Rmoon_hat) call vunit(Rsun,Rsun_hat) do kk=1,3 dRmoon_hat(kk) = dRmoon(kk)/Rmoon_mag - Rmoon(kk)*dRmoon_mag / 1 Rmoon_mag**2 dRsun_hat(kk) = dRsun(kk)/Rsun_mag - Rsun(kk)*dRsun_mag / 1 Rsun_mag**2 enddo C If(KETDD .ne. 0) Then write(6,'(/,10x,"Debug from Subroutine ETDG: KETDC =",I2)')KETDC write(6,8)' Rmoon ', Rmoon write(6,8)' dRmoon ', dRmoon write(6,8)' Rmoon_mag, dRmoon_mag ', Rmoon_mag, dRmoon_mag write(6,8)' Rmoon_hat ', Rmoon_hat write(6,8)' dRmoon_hat ', dRmoon_hat write(6,8)' Rsun ', Rsun write(6,8)' dRsun ', dRsun write(6,8)' Rsun_mag, dRsun_mag ', Rsun_mag, dRsun_mag write(6,8)' Rsun_hat ', Rsun_hat write(6,8)' dRsun_hat ', dRsun_hat write(6,'(" XLOVEH, XLOVEL ", 2f10.5)') XLOVEH, XLOVEL write(6,8)' GMMOON ',GMMOON write(6,8)' GMSUN ',GMSUN write(6,8)' GMEARTH ',GMEARTH write(6,8)' REARTH ',REARTH Endif C C****************************************************************** C Loop through twice for sites 1 and 2 C Do k=1,2 C C First check for geocenter station. There should be no tidal effects at the C geocenter. IF ((Nzero .eq. k) .OR. (KAXIS(K).EQ. 6)) THEN C print *,'ETDG: Zero site found ' Do kk=1,3 TD82P(kk,k) = 0.D0 TD82V(kk,k) = 0.D0 Enddo GO TO 100 ENDIF C C Vector from geocenter to site #k and its derivative do kk = 1,3 r_vec(kk) = USITEP(kk,k) dr_vec(kk) = USITEV(kk,k) enddo C Magnitude of vector from geocenter to site #k (r_vec) and its derivative C (Derivative should be zero) r_mag = vecmg(r_vec) C dr_mag = Dotp(r_vec,dr_vec)/r_mag dr_mag = 0.D0 C Unit vector from geocenter to site # k and its derivative call vunit(r_vec,r_hat) do kk=1,3 dr_hat(kk) = dr_vec(kk)/r_mag - r_vec(kk)*dr_mag/r_mag**2 enddo C C Dot product of unit Moon vector with unit site vector and its derivative Rmoon_dot_r = Dotp(Rmoon_hat,r_hat) dRmoon_dot_r = Dotp(Rmoon_hat,dr_hat) + 1 Dotp(dRmoon_hat,r_hat) C C Dot product of unit Sun vector with unit site vector and its derivative Rsun_dot_r = Dotp(Rsun_hat,r_hat) dRsun_dot_r = Dotp(Rsun_hat,dr_hat) + 1 Dotp(dRsun_hat,r_hat) C C Simplify and evaluate equation 6 C term1M = GMMOON / Rmoon_mag**3 dterm1M = -3.D0 * GMMOON * dRmoon_mag / Rmoon_mag**4 C term2 = r_mag**4 / GMEARTH dterm2 = 4.D0 * r_mag**3 * dr_mag / GMEARTH C term3M = 3.0D0 * XLOVEL * Rmoon_dot_r dterm3M = 3.0D0 * XLOVEL * dRmoon_dot_r C term4M = ( 3.D0 * (XLOVEH/2.D0 - XLOVEL)*Rmoon_dot_r**2) . - XLOVEH/2.D0 dterm4M = ( 6.D0 * (XLOVEH/2.D0 - XLOVEL) * Rmoon_dot_r . * dRmoon_dot_r) C term1M_2 = term1M * term2 dterm1M_2 = dterm1M*term2 + term1M*dterm2 C term1S = GMSUN / Rsun_mag**3 dterm1S = -3.D0 * GMSUN * dRsun_mag / Rsun_mag**4 C term3S = 3.0D0 * XLOVEL * Rsun_dot_r dterm3S = 3.0D0 * XLOVEL * dRsun_dot_r C term4S = ( 3.D0 * (XLOVEH/2.D0 - XLOVEL)*Rsun_dot_r**2) . - XLOVEH/2.D0 dterm4S = ( 6.D0 * (XLOVEH/2.D0 - XLOVEL) * Rsun_dot_r . * dRsun_dot_r) C term1S_2 = term1S * term2 dterm1S_2 = dterm1S*term2 + term1S*dterm2 C C Compute second order tidal terms do kk = 1,3 delta_r2(kk,k) = term1M_2 * ( term3M * Rmoon_hat(kk) . + term4M * r_hat(kk) ) . + term1S_2 * ( term3S * Rsun_hat(kk) . + term4S * r_hat(kk) ) C ddelta_r2(kk,k) = dterm1M_2 * ( term3M * Rmoon_hat(kk) 1 + term4M * r_hat(kk) ) 2 + term1M_2 * ( dterm3M * Rmoon_hat(kk) 3 + term3M * dRmoon_hat(kk) 4 + dterm4M * r_hat(kk) + term4M * dr_hat(kk)) 5 + dterm1S_2 * ( term3S * Rsun_hat(kk) 6 + term4S * r_hat(kk) ) 7 + term1S_2 * ( dterm3S * Rsun_hat(kk) 8 + term3S * dRsun_hat(kk) 9 + dterm4S * r_hat(kk) + term4S * dr_hat(kk)) enddo C C************************************************** C Compute third order tidal terms: C term5M = GMMOON / Rmoon_mag**4 dterm5M = -4.D0 * GMMOON * dRmoon_mag / Rmoon_mag**5 C C term6 = r_mag**5 / GMEARTH C dterm6 = 5.D0 * r_mag**4 * dr_mag / GMEARTH C Change to equatorial radius for Gipson/Mathews model, 94JUL08 -DG- term6 = REARTH**5 / GMEARTH dterm6 = 0.D0 C term7aM = 2.5D0 * Rmoon_dot_r**3 dterm7aM = 7.5D0 * Rmoon_dot_r**2 * dRmoon_dot_r term7bM = -1.5D0 * Rmoon_dot_r dterm7bM = -1.5D0 * dRmoon_dot_r term7M = term7aM + term7bM dterm7M = dterm7aM + dterm7bM C term8M = 1.5D0 * (5.D0 * Rmoon_dot_r**2 - 1.D0) dterm8M = 1.5D0 * (10.D0 * Rmoon_dot_r * dRmoon_dot_r) C term9M = -term8M * Rmoon_dot_r dterm9M = -dterm8M * Rmoon_dot_r - term8M * dRmoon_dot_r C C ****************************************** term5S = GMSUN / Rsun_mag**4 dterm5S = -4.D0 * GMSUN * dRsun_mag / Rsun_mag**5 C term7aS = 2.5D0 * Rsun_dot_r**3 dterm7aS = 7.5D0 * Rsun_dot_r**2 * dRsun_dot_r term7bS = -1.5D0 * Rsun_dot_r dterm7bS = -1.5D0 * dRsun_dot_r term7S = term7aS + term7bS dterm7S = dterm7aS + dterm7bS C term8S = 1.5D0 * (5.D0 * Rsun_dot_r**2 - 1.D0) dterm8S = 1.5D0 * (10.D0 * Rsun_dot_r * dRsun_dot_r) C term9S = -term8S * Rsun_dot_r dterm9S = -dterm8S * Rsun_dot_r - term8S * dRsun_dot_r C ****************************************** C Do kk = 1,3 C term789M(kk) = (h3*term7M + l3*term9M)* r_hat(kk) . + l3 * term8M * Rmoon_hat(kk) dterm789M(kk) = (h3*dterm7M + l3*dterm9M)* r_hat(kk) . + l3 * dterm8M * Rmoon_hat(kk) . + (h3*term7M + l3*term9M)* dr_hat(kk) . + l3 * term8M * dRmoon_hat(kk) C term789S(kk) = (h3*term7S + l3*term9S)* r_hat(kk) . + l3 * term8S * Rsun_hat(kk) dterm789S(kk) = (h3*dterm7S + l3*dterm9S)* r_hat(kk) . + l3 * dterm8S * Rsun_hat(kk) . + (h3*term7S + l3*term9S)* dr_hat(kk) . + l3 * term8S * dRsun_hat(kk) C C Third order terms: delta_r3(kk,k) = . term5M*term6*term789M(kk) + term5S*term6*term789S(kk) C ddelta_r3(kk,k) = . dterm5M*term6*term789M(kk) + term5M*dterm6*term789M(kk) + . term5M*term6*dterm789M(kk) + . dterm5S*term6*term789S(kk) + term5S*dterm6*term789S(kk) + . term5S*term6*dterm789S(kk) C Enddo C C********************************************************************** C STEP 2 C C Compute the IERS K1 topocentric tide displacement and velocity C (IERS Standards, 1992, page 57, equation 7). geo_lat(k) = DASIN( (usitep(3,k)) / DSQRT(usitep(1,k)**2 + . usitep(2,k)**2 + usitep(3,k)**2) ) TCK = -.0253D0 * DSIN(geo_lat(k)) * DCOS(geo_lat(k)) TCK1(1,k) = TCK * DSIN(GAST(1) + SITLON(k)) TCK1(2,k) = 0.D0 TCK1(3,k) = 0.D0 C TCK1V(1,k) = TCK * GAST(2) * DCOS(GAST(1) + SITLON(k)) TCK1V(2,k) = 0.D0 TCK1V(3,k) = 0.D0 C C Rotate the K1 vertical displacement and velocity to the crust fixed C geocentric coordinate system. CALL VECRT ( TCTOCF(1,1,k), TCK1(1,k), CFK1P(1,k) ) CALL VECRT ( TCTOCF(1,1,k), TCK1V(1,k), CFK1V(1,k) ) C C Next rotate the crust fixed geocentric displacement to J2000.0. CALL VECRT ( R2000(1,1,1), CFK1P(1,k), XK1P(1,k) ) C And rotate the crust fixed geocentric velocity to the J2000.0 system. C There are two contributions. The first is due to the rotation of the C Earth, and the second is due to the effect of the Earth tides. CALL VECRT ( R2000(1,1,2), CFK1P(1,k), XK1V1(1,k) ) CALL VECRT ( R2000(1,1,1), CFK1V(1,k), XK1V2(1,k) ) C Add the two contributions. CALL VECAD ( XK1V1(1,k), XK1V2(1,k), XK1V(1,k) ) C C Add the IERS second order term, the third order term and the IERS K1 C term to get the total tide Do kk=1,3 TD82P(kk,k) = delta_r2(kk,k) + delta_r3(kk,k) + XK1P(kk,k) TD82V(kk,k) = ddelta_r2(kk,k) + ddelta_r3(kk,k) + XK1V(kk,k) Enddo C C***************************** C Check for debug output If (KETDD .ne. 0) Then write(6,'(/," Dump for site #",i1)') K write(6,8)' r_vec ', r_vec write(6,8)' dr_vec ', dr_vec write(6,8)' r_mag, dr_mag', r_mag, dr_mag write(6,8)' r_hat ', r_hat write(6,8)' dr_hat ', dr_hat write(6,8)' Rmoon_dot_r ', Rmoon_dot_r write(6,8)' dRmoon_dot_r ', dRmoon_dot_r write(6,8)' Rsun_dot_r ', Rsun_dot_r write(6,8)' dRsun_dot_r ', dRsun_dot_r write(6,8)' term1M, dterm1M ', term1M, dterm1M write(6,8)' term2, dterm2 ', term2, dterm2 write(6,8)' term3M, dterm3M ', term3M, dterm3M write(6,8)' term4M, dterm4M ', term4M, dterm4M write(6,8)' term1M_2, dterm1M_2 ', term1M_2, dterm1M_2 write(6,8)' term1S, dterm1S ', term1S, dterm1S write(6,8)' term3S, dterm3S ', term3S, dterm3S write(6,8)' term4S, dterm4S ', term4S, dterm4S write(6,8)' term1S_2, dterm1S_2 ', term1S_2, dterm1S_2 write(6,8)' delta_r2 ', delta_r2(1,k),delta_r2(2,k), . delta_r2(3,k) write(6,8)' ddelta_r2 ', ddelta_r2(1,k),ddelta_r2(2,k), . ddelta_r2(3,k) write(6,8)' term5M, dterm5M ', term5M, dterm5M write(6,'(" term6, dterm6 ",D30.21,4x, D25.16)') term6 , dterm6 write(6,8)' r_mag, dr_mag', r_mag, dr_mag write(6,8)' term7aM, dterm7aM ', term7aM, dterm7aM write(6,8)' term7bM, dterm7bM ', term7bM, dterm7bM write(6,8)' term7M , dterm7M ', term7M, dterm7M write(6,8)' term8M , dterm8M ', term8M, dterm8M write(6,8)' term9M , dterm9M ', term9M, dterm9M write(6,8)' term789M ', term789M write(6,8)' dterm789M ', term789M write(6,8)' term5S , dterm5S ', term5S, dterm5S write(6,8)' term7aS, dterm7aS ', term7aS, dterm7aS write(6,8)' term7bS, dterm7bS ', term7bS, dterm7bS write(6,8)' term7S , dterm7S ', term7S, dterm7S write(6,8)' term8S , dterm8S ', term8S, dterm8S write(6,8)' term9S , dterm9S ', term9S, dterm9S write(6,8)' term789S ', term789S write(6,8)' dterm789S ', dterm789S write(6,8)' delta_r3 ', delta_r3(1,k),delta_r3(2,k), . delta_r3(3,k) write(6,8)' ddelta_r3 ', ddelta_r3(1,k),ddelta_r3(2,k), . ddelta_r3(3,k) write(6,8)'SITLAT(k), SITLON(k) ', SITLAT(k), SITLON(k) write(6,8)'geo_lat(k) ', geo_lat(k) write(6,8)'TCK, TCK1, TCK1V ',TCK, TCK1(1,k),TCK1V(1,k) write(6,8)' XK1P ', XK1P(1,k),XK1P(2,k),XK1P(3,k) write(6,8)' XK1V ', XK1V(1,k),XK1V(2,k),XK1V(3,k) C Endif C C Close loop over sites 100 CONTINUE Enddo C 8 FORMAT(A,4D25.16/(7X,5D25.16)) C Normal program conclusion. RETURN END