
Implementation of VO queries

Matthew Whiting

Contents

1 Summary 1

2 Expected queries 2

3 The mySQL database 3
3.1 Problems . 3

4 Existing data: The “Observations” table 4
4.1 Positional information . 4

5 The new data: 70cm Survey 5
5.1 Location of data . 5
5.2 Incorporating the data into the database . 5

6 VO conesearch queries 6
6.1 How it can be done in SQL code . 6
6.2 Producing a VOTable . 6
6.3 Provision of data – what’s in the VOTable? . 6

A “Observations” table setup 7

B Proposed “S70” table setup 8

1 Summary

This document summarises how the VO-compliant query form is to be set up, what queries we expect,
and what modifications need to be made from where the archive is at present (June 2007). This will be
continually updated as this part of the project progresses.

June 27, 2007 1

2 Expected queries

Here is a list of expected queries that the archive should be able to deal with, along with comments on each:

• All observations of a given pulsar.
This is essentially how the archive works at the moment.

• All observations of a given sky position, within a search radius – this is essentially a conesearch.
This also exists on the archive at the moment, but doesn’t seem to work. An example: a search for
J0835-4510 returns a large number of files, but a search at its RA & Dec gives nothing (i.e. “No
pulsars found within (08:35:20.700, -45:10:35.700) with radius 2”).

• Accept standard conesearch queries from a VO service.
Not possible at present.

• All observations within given time range, perhaps combined with above.
A time-range is catered for at present – and it seems to work fine.

• Be able to refine queries based on pulsar parameters.
i.e. search for all pulsars with period in a given range, or with DM greater than some value... This is
not catered for at present.

This is mostly a wish-list. The current project (as at June 2007) will involve enabling conesearches to be
made on survey data, as well as the queries that are currently possible with the on-line archive. Conesearches
on timing data, particularly with concurrent searches on pulsar parameters is probably beyond the scope of
what we can do.

June 27, 2007 2

3 The mySQL database

We note here some important points for the mySQL database. It is based on herschel, with two accounts:
pulsar and psrdba – the latter is the administrative account and should be used for adding/modifying
tables and so on. The first allows searching of tables and other similar queries only.

The full set of php, sql and related files that Albert has compiled reside on the machine herschel, in
herschel:/var/www/vhosts/pulsararchive.atnf.csiro.au/htdocs and sub-directories. This includes
the perl script perl/find archives.pl, which does the trawling of the disks to pick up new data files.

3.1 Problems

• When you are on herschel, you cannot see the /psr disk, which means all the psr programs are
unavailable. Is there any reason for this? It is particularly a problem with the position-related query
on the web archive, as this uses vap to search for pulsars around a given position.

• The version of mySQL could probably do with an update. It is only 4.0, and it would be great to
have 5.0 or similar so that we could create functions easily – I’m thinking functions like an angular
separation calculator, as this would make the cone-search queries much easier to write.

June 27, 2007 3

4 Existing data: The “Observations” table

The list of the columns in the existing observations mySQL table is given in the table in Appendix A.

4.1 Positional information

Note that the sky positions for the files in the observations table are broken up into hours/degrees,
minutes and seconds columns. This presents a problem, as the declination information does not properly
record positions like -00:01:23. This is because you cannot distinguish between −0 and +0 in the decj degree
entry.

The positions should either be stored as decimal degrees (best option), or, if the hours/degrees, minutes
and seconds must be stored separately, also have a decj sign column that indicates the sign of the declination
(equal to +1 or −1). The positions could also be stored as a string (i.e. “18:23:45.3”), although a numerical
value will also be needed for angular separation calculations.

An example of how we can create new columns to store the decimal degree values is the following bit of
SQL code:

SELECT pulsar_name,filename,data_type,decj_degree,decj_minute,decj_second,
(raj_hour+raj_minute/60.+raj_second/3600.)*15 as raj,
CASE WHEN pulsar_name LIKE "%-%"

THEN -1.*(abs(decj_degree)+decj_minute/60.+decj_second/3600.)
ELSE abs(decj_degree)+decj_minute/60.+decj_second/3600.
END as decj

FROM observations
WHERE abs(decj_degree)<1

AND (decj_minute>0 or decj_second>0)
ORDER BY pulsar_name;

Currently the positions are stored incorrectly even in the ATNF Pulsar Database1. A search “within
circular boundary” with radius of 1 degree from 16:07:00, -00:30:00 does not return J1607−0032, which
appears to be 1.05 degrees away. This is because the DECJ is returned as +00:32:40.83 (i.e. the sign of the
declination is not preserved). This seems to be a wider problem, originating with the psrcat program.

A new table can be created very simply that has two new columns with the decimal values of RA and
DEC in it:

-- version of mysql is <4.1 so cannot use CREATE ... LIKE ...
CREATE TEMPORARY TABLE newobs

SELECT *,
(raj_hour+raj_minute/60.+raj_second/3600.)*15 as raj,
CASE WHEN pulsar_name LIKE "%-%"

THEN -1.*(abs(decj_degree)+decj_minute/60.+decj_second/3600.)
WHEN (decj_degree<0.)

THEN -1.*(abs(decj_degree)+decj_minute/60.+decj_second/3600.)
ELSE abs(decj_degree)+decj_minute/60.+decj_second/3600.

END AS decj
FROM observations;

Note the two clauses that set the declination to be negative. The first is designed to deal with sources that
have −1◦ < δ < 0◦, and looks at the name to see if it has a minus sign. The second clause deals with sources
that don’t have an “IAU-format” name (such as “CAL”). This will only catch them if they have δ < −1◦,
but fortunately all the sources with −1◦ < δ < 0◦ are suitably named to be caught by the first clause.

The only remaining problem sources as far as positions go are those with no positional information in
the table. There are 246 rows that satisfy this criterion – how are we going to deal with these?

1See http://www.atnf.csiro.au/research/pulsar/psrcat/

June 27, 2007 4

5 The new data: 70cm Survey

5.1 Location of data

The data is going to be stored in the $S70V directory, once it is converted to PSRFITS format from the
PKS format files in $S70TAPES. There is some data there now, most of which is not up to date with all
the metadata (it was converted earlier in the year, with older versions of the pvoconvert code and the
PSRFITS definition file), and some that I have converted in the past week.

5.2 Incorporating the data into the database

It is relatively straightforward to load the data into the database, either directly using SQL commands or via
the PHP interface. Here’s an example of how it may be done (taken from $PVO/sql/create table s70.sql):

-- create the table with the following fields
CREATE TEMPORARY TABLE s70 (
file_id SMALLINT UNSIGNED AUTO_INCREMENT,
filename VARCHAR(30),
fileloc VARCHAR(100),
hdrver VARCHAR(10),
survey VARCHAR(10),
src_name VARCHAR(20),
raj VARCHAR(15),
decj VARCHAR(15),
rajd DOUBLE,
decjd DOUBLE,
bmaj FLOAT,
bmin FLOAT,
bpa FLOAT,
date_obs VARCHAR(30),
mjd DOUBLE,
obsfreq DOUBLE,
chanbw DOUBLE,
nchan INT,
scanlen DOUBLE,
tbin DOUBLE,
PRIMARY KEY (file_id)
);

-- now load the data from the file in my PulsarVO directory.
-- It is a csv file, and the strings in it are enclosed by ".
-- We don’t want the quote marks in the table, so the
-- "OPTIONALLY ENCLOSED BY" statement will remove them.
LOAD DATA LOCAL
INFILE "/DATA/SITAR_1/whi550/VO/PulsarVO/s70v_summary.csv"
INTO TABLE s70
FIELDS TERMINATED BY ","
OPTIONALLY ENCLOSED BY "\""
IGNORE 1 LINES -- ignore the first line in the csv file (contains the headers)
(filename,fileloc,hdrver,survey,src_name,raj,decj,rajd,decjd,
bmaj,bmin,bpa,date_obs,mjd,obsfreq,chanbw,nchan,scanlen,tbin);

The exact columns are still to be fully determined, but the SQL makeup will be as given in Appendix B.

June 27, 2007 5

6 VO conesearch queries

6.1 How it can be done in SQL code

Here is an example of how you can query the database, once the 70cm data is in there, by searching for
angular separation:

-- Performing a conesearch around the position
-- RA=0.=00:00:00 and DEC=-43.=-43:00:00 for the S70 data.
-- This should pick up three files from the new batch added on June 26.
-- The old query of RA=0 and DEC=-49 should pick up four files.
SET @qra=0., @qdec=-49.;
SELECT filename, raj, decj, 0.5*(bmaj+bmin) AS beamsize, obsfreq, scanlen,

(degrees(acos(cos(radians(rajd-@qra))*
cos(radians(decjd))*cos(radians(@qdec))
+sin(radians(decjd))*sin(radians(@qdec))))) AS angsep

FROM s70
WHERE (degrees(acos(cos(radians(rajd-@qra))*

cos(radians(decjd))*cos(radians(@qdec))
+sin(radians(decjd))*sin(radians(@qdec))))

- 0.25*(bmaj+bmin)) < 1.
ORDER BY angsep;

6.2 Producing a VOTable

The above SQL structure can be readily incorporated into a .php file and used to query the database via a
dynamic webpage. This .php file can also produce an XML file rather than the usual HTML format. The
way to do this is to have at the start of the php file the expression

header("Content-type: text/xml");

to make sure the resulting file is read as XML.
From there, it is straightforward to put in the necessary VOTable fields and fill in the data that results

from the query. This is done in the file conequery-vo.php.

6.3 Provision of data – what’s in the VOTable?

The VOTable that we provide is simply a table of metadata. By default all metadata that is in the SQL
table is provided, with the exception of the file’s disk location. We do provide the filename, but that is all –
there is no mechanism to directly obtain the data from the cone-search query.

The reasoning here is that a user might first do a VO cone-search, and then, if a result of interest came
up, they would then go to the web archive and repeat the search. The web archive’s results page would then
provide means for downloading the data, in much the same way as it is set up at present (thanks to Albert).

June 27, 2007 6

A “Observations” table setup

Field Type Null Key Default Extra
pulsar name varchar(16)
filename varchar(32) PRI
raj hour int(2) YES 0
raj minute int(2) YES 0
raj second decimal(12,10) YES 0.0000000000
decj degree int(2) YES 0
decj minute int(2) YES 0
decj second decimal(12,10) YES 0.0000000000
dm decimal(16,10) YES NULL
period decimal(32,24) YES NULL
bw decimal(16,6) YES NULL
cnfg varchar(128) YES NULL
data loc varchar(128) PRI
data type varchar(16) YES NULL
freq decimal(32,16) YES NULL
inst varchar(32) YES NULL
MJD decimal(32,26) YES NULL
npol int(6) YES NULL
nchan int(6) YES NULL
nbin int(6) YES NULL
nsub int(6) YES NULL
rcvr varchar(16) YES NULL
site varchar(8) YES NULL
file size bytes int(32) YES NULL
length decimal(32,20) YES NULL
obsrvr varchar(32) YES NULL
date varchar(16) YES NULL
ut varchar(16) YES NULL
gl float YES NULL
gb float YES NULL
tsamp float YES NULL
nbeam tinyint(3) unsigned YES NULL

Table 1: Fields for the observations table in the mySQL database, as it stands at present.

June 27, 2007 7

B Proposed “S70” table setup

Field Type Null Key Default Extra
file id smallint(5) unsigned PRI NULL auto increment
filename varchar(30) YES NULL
fileloc varchar(100) YES NULL
hdrver varchar(10) YES NULL
survey varchar(10) YES NULL
src name varchar(20) YES NULL
raj varchar(15) YES NULL
decj varchar(15) YES NULL
rajd double YES NULL
decjd double YES NULL
bmaj float YES NULL
bmin float YES NULL
bpa float YES NULL
date obs varchar(30) YES NULL
mjd double YES NULL
obsfreq double YES NULL
chanbw double YES NULL
nchan int YES NULL
scanlen double YES NULL
tbin double YES NULL

Table 2: Fields for the proposed 70cm data table in the mySQL database.

June 27, 2007 8

