source: tags/release-1.6.1/docs/Reconstruction.tex

Last change on this file was 3, checked in by Matthew Whiting, 18 years ago

This is the first full import of all working code to
the Duchamp repository.
Made three directories at top level:

branches/ tags/ trunk/

and trunk/ has the full set of code:
ATrous/ Cubes/ Detection/ InputComplete? InputExample? README Utils/ docs/ mainDuchamp.cc param.cc param.hh

File size: 3.0 KB
Line 
1\documentclass[11pt]{article}
2\usepackage[sort]{natbib}
3\usepackage{url}
4\usepackage{graphicx}
5\usepackage{lscape}
6\bibpunct[,]{(}{)}{;}{a}{}{,}
7\textwidth=161 mm
8\textheight=248 mm
9\topmargin=-13 mm
10\oddsidemargin=0 mm
11\parindent=6 mm
12
13\newcommand{\eg}{e.g.\ }
14\newcommand{\ie}{i.e.\ }
15\newcommand{\hi}{H{\sc i}}
16\newcommand{\hipass}{{\sc hipass}}
17\newcommand{\progname}{{\tt Duchamp}}
18\newcommand{\entrylabel}[1]{\mbox{\textsf{\bf{#1:}}}\hfil}
19\newenvironment{entry}
20        {\begin{list}{}%
21                {\renewcommand{\makelabel}{\entrylabel}%
22                        \setlength{\labelwidth}{30mm}%
23                        \setlength{\labelsep}{5pt}%
24                        \setlength{\itemsep}{2pt}%
25                        \setlength{\parsep}{2pt}%
26                        \setlength{\leftmargin}{35mm}%
27                }%
28        }%
29{\end{list}}
30
31\title{The ``noiseless reconstruction'' of astronomical data cubes
32  using the multi-scale {\it \`a trous} wavelet technique.}
33
34\author{Matthew Whiting\\Australia Telescope National Facility\\CSIRO}
35
36\date{November 2005}
37
38\begin{document}
39
40\maketitle
41
42\begin{abstract}
43We describe a technique to reconstruct a three-dimensional FITS data
44cube using multi-scale wavelet decomposition. The technique provides a
45marked reduction in the noise level of the cube, while retaining
46objects, providing an excellent basis for a source-finding algorithm.
47\end{abstract}
48
49\section{Background}
50
51An important step in most astronomical data analysis that involves
52multi-dimensional imaging or spectroscopic data is the detection of
53sources. Often, astronomical sources (be they stars, galaxies, masers
54or otherwise) are faint and of a strength close to the noise or
55background of the image. Any procedure that could reduce this
56statistical background without removing the real features would be a
57great aid in detecting such sources.
58
59This is of great interest for large-scale surveys: large-scale here
60meaning both the size of data produced as well as the area of the sky
61they cover. The data rate seen in many current and planned surveys
62necessitates a largely automated pipeline reduction process, with
63minimal input from a user***. An object-detection (and
64characterisation) process is the logical next step (particularly with
65a view to producing source catalogues and the like), and such a
66process will need to be as sensitive as possible. This means beating
67the noise level in some way.
68
69*** MATCHED FILTERS ***
70
71*** SMOOTHING ***
72
73*** WAVELETS ***
74
75\section{Wavelet decomposition}
76
77The technique we describe here relies on the properties of
78wavelets. These are localised functions that are described by two
79parameters, location (where the wavelet is operating) and scale (what
80range of values it operates on). An example of a wavelet is shown in
81Fig.~\ref{fig-wavelet}.
82
83\begin{figure}
84\vspace{7.0cm}
85\caption{An example of a wavelet function.}
86\label{fig-wavelet}
87\end{figure}
88
89
90
91\section{Implementation}
92
93\subsection{Method}
94
95\subsection{Edge effects}
96
97
98\section{Results}
99
100\section{Applications of the technique}
101
102\section{Conclusions}
103
104
105\end{document}
Note: See TracBrowser for help on using the repository browser.