source: trunk/src/Scantable.cpp @ 2789

Last change on this file since 2789 was 2789, checked in by Malte Marquarding, 11 years ago

Ticket #288: implemented dropping of xpols as scantable.drop_xpol()

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 156.1 KB
RevLine 
[805]1//
2// C++ Implementation: Scantable
3//
4// Description:
5//
6//
7// Author: Malte Marquarding <asap@atnf.csiro.au>, (C) 2005
8//
9// Copyright: See COPYING file that comes with this distribution
10//
11//
[206]12#include <map>
[2591]13#include <sys/time.h>
[206]14
[2186]15#include <atnf/PKSIO/SrcType.h>
16
[125]17#include <casa/aips.h>
[2186]18#include <casa/iomanip.h>
[80]19#include <casa/iostream.h>
[2186]20#include <casa/OS/File.h>
[805]21#include <casa/OS/Path.h>
[2658]22#include <casa/Logging/LogIO.h>
[80]23#include <casa/Arrays/Array.h>
[2186]24#include <casa/Arrays/ArrayAccessor.h>
25#include <casa/Arrays/ArrayLogical.h>
[80]26#include <casa/Arrays/ArrayMath.h>
27#include <casa/Arrays/MaskArrMath.h>
[2186]28#include <casa/Arrays/Slice.h>
[1325]29#include <casa/Arrays/Vector.h>
[455]30#include <casa/Arrays/VectorSTLIterator.h>
[418]31#include <casa/BasicMath/Math.h>
[504]32#include <casa/BasicSL/Constants.h>
[2186]33#include <casa/Containers/RecordField.h>
34#include <casa/Logging/LogIO.h>
[286]35#include <casa/Quanta/MVAngle.h>
[2186]36#include <casa/Quanta/MVTime.h>
[902]37#include <casa/Utilities/GenSort.h>
[2]38
[2186]39#include <coordinates/Coordinates/CoordinateUtil.h>
[2]40
[1325]41// needed to avoid error in .tcc
42#include <measures/Measures/MCDirection.h>
43//
44#include <measures/Measures/MDirection.h>
[2186]45#include <measures/Measures/MEpoch.h>
[80]46#include <measures/Measures/MFrequency.h>
[2186]47#include <measures/Measures/MeasRef.h>
48#include <measures/Measures/MeasTable.h>
49#include <measures/TableMeasures/ScalarMeasColumn.h>
50#include <measures/TableMeasures/TableMeasDesc.h>
[805]51#include <measures/TableMeasures/TableMeasRefDesc.h>
52#include <measures/TableMeasures/TableMeasValueDesc.h>
[2]53
[2186]54#include <tables/Tables/ArrColDesc.h>
55#include <tables/Tables/ExprNode.h>
56#include <tables/Tables/ScaColDesc.h>
57#include <tables/Tables/SetupNewTab.h>
58#include <tables/Tables/TableCopy.h>
59#include <tables/Tables/TableDesc.h>
60#include <tables/Tables/TableIter.h>
61#include <tables/Tables/TableParse.h>
62#include <tables/Tables/TableRecord.h>
63#include <tables/Tables/TableRow.h>
64#include <tables/Tables/TableVector.h>
65
66#include "MathUtils.h"
67#include "STAttr.h"
[2737]68#include "STBaselineTable.h"
[2186]69#include "STLineFinder.h"
70#include "STPolCircular.h"
[896]71#include "STPolLinear.h"
[913]72#include "STPolStokes.h"
[2321]73#include "STUpgrade.h"
[2666]74#include "STFitter.h"
[2186]75#include "Scantable.h"
[2]76
[2462]77#define debug 1
78
[125]79using namespace casa;
[2]80
[805]81namespace asap {
82
[896]83std::map<std::string, STPol::STPolFactory *> Scantable::factories_;
84
85void Scantable::initFactories() {
86  if ( factories_.empty() ) {
87    Scantable::factories_["linear"] = &STPolLinear::myFactory;
[1323]88    Scantable::factories_["circular"] = &STPolCircular::myFactory;
[913]89    Scantable::factories_["stokes"] = &STPolStokes::myFactory;
[896]90  }
91}
92
[805]93Scantable::Scantable(Table::TableType ttype) :
[852]94  type_(ttype)
[206]95{
[896]96  initFactories();
[805]97  setupMainTable();
[2346]98  freqTable_ = STFrequencies(*this);
99  table_.rwKeywordSet().defineTable("FREQUENCIES", freqTable_.table());
[852]100  weatherTable_ = STWeather(*this);
[805]101  table_.rwKeywordSet().defineTable("WEATHER", weatherTable_.table());
[852]102  focusTable_ = STFocus(*this);
[805]103  table_.rwKeywordSet().defineTable("FOCUS", focusTable_.table());
[852]104  tcalTable_ = STTcal(*this);
[805]105  table_.rwKeywordSet().defineTable("TCAL", tcalTable_.table());
[852]106  moleculeTable_ = STMolecules(*this);
[805]107  table_.rwKeywordSet().defineTable("MOLECULES", moleculeTable_.table());
[860]108  historyTable_ = STHistory(*this);
109  table_.rwKeywordSet().defineTable("HISTORY", historyTable_.table());
[959]110  fitTable_ = STFit(*this);
111  table_.rwKeywordSet().defineTable("FIT", fitTable_.table());
[1881]112  table_.tableInfo().setType( "Scantable" ) ;
[805]113  originalTable_ = table_;
[322]114  attach();
[18]115}
[206]116
[805]117Scantable::Scantable(const std::string& name, Table::TableType ttype) :
[852]118  type_(ttype)
[206]119{
[896]120  initFactories();
[1819]121
[865]122  Table tab(name, Table::Update);
[1009]123  uInt version = tab.keywordSet().asuInt("VERSION");
[483]124  if (version != version_) {
[2321]125      STUpgrade upgrader(version_);
[2162]126      LogIO os( LogOrigin( "Scantable" ) ) ;
127      os << LogIO::WARN
[2321]128         << name << " data format version " << version
129         << " is deprecated" << endl
130         << "Running upgrade."<< endl 
[2162]131         << LogIO::POST ; 
[2321]132      std::string outname = upgrader.upgrade(name);
[2332]133      if ( outname != name ) {
134        os << LogIO::WARN
135           << "Data will be loaded from " << outname << " instead of "
136           << name << LogIO::POST ;
137        tab = Table(outname, Table::Update ) ;
138      }
[483]139  }
[1009]140  if ( type_ == Table::Memory ) {
[852]141    table_ = tab.copyToMemoryTable(generateName());
[1009]142  } else {
[805]143    table_ = tab;
[1009]144  }
[1881]145  table_.tableInfo().setType( "Scantable" ) ;
[1009]146
[859]147  attachSubtables();
[805]148  originalTable_ = table_;
[329]149  attach();
[2]150}
[1819]151/*
152Scantable::Scantable(const std::string& name, Table::TableType ttype) :
153  type_(ttype)
154{
155  initFactories();
156  Table tab(name, Table::Update);
157  uInt version = tab.keywordSet().asuInt("VERSION");
158  if (version != version_) {
159    throw(AipsError("Unsupported version of ASAP file."));
160  }
161  if ( type_ == Table::Memory ) {
162    table_ = tab.copyToMemoryTable(generateName());
163  } else {
164    table_ = tab;
165  }
[2]166
[1819]167  attachSubtables();
168  originalTable_ = table_;
169  attach();
170}
171*/
172
[2658]173Scantable::Scantable( const Scantable& other, bool clear )
[206]174{
[805]175  // with or without data
[859]176  String newname = String(generateName());
[865]177  type_ = other.table_.tableType();
[859]178  if ( other.table_.tableType() == Table::Memory ) {
179      if ( clear ) {
180        table_ = TableCopy::makeEmptyMemoryTable(newname,
181                                                 other.table_, True);
182      } else
183        table_ = other.table_.copyToMemoryTable(newname);
[16]184  } else {
[915]185      other.table_.deepCopy(newname, Table::New, False,
186                            other.table_.endianFormat(),
[865]187                            Bool(clear));
188      table_ = Table(newname, Table::Update);
189      table_.markForDelete();
190  }
[1881]191  table_.tableInfo().setType( "Scantable" ) ;
[1111]192  /// @todo reindex SCANNO, recompute nbeam, nif, npol
[915]193  if ( clear ) copySubtables(other);
[859]194  attachSubtables();
[805]195  originalTable_ = table_;
[322]196  attach();
[2]197}
198
[865]199void Scantable::copySubtables(const Scantable& other) {
200  Table t = table_.rwKeywordSet().asTable("FREQUENCIES");
[2346]201  TableCopy::copyRows(t, other.freqTable_.table());
[865]202  t = table_.rwKeywordSet().asTable("FOCUS");
203  TableCopy::copyRows(t, other.focusTable_.table());
204  t = table_.rwKeywordSet().asTable("WEATHER");
205  TableCopy::copyRows(t, other.weatherTable_.table());
206  t = table_.rwKeywordSet().asTable("TCAL");
207  TableCopy::copyRows(t, other.tcalTable_.table());
208  t = table_.rwKeywordSet().asTable("MOLECULES");
209  TableCopy::copyRows(t, other.moleculeTable_.table());
210  t = table_.rwKeywordSet().asTable("HISTORY");
211  TableCopy::copyRows(t, other.historyTable_.table());
[972]212  t = table_.rwKeywordSet().asTable("FIT");
213  TableCopy::copyRows(t, other.fitTable_.table());
[865]214}
215
[859]216void Scantable::attachSubtables()
217{
[2346]218  freqTable_ = STFrequencies(table_);
[859]219  focusTable_ = STFocus(table_);
220  weatherTable_ = STWeather(table_);
221  tcalTable_ = STTcal(table_);
222  moleculeTable_ = STMolecules(table_);
[860]223  historyTable_ = STHistory(table_);
[972]224  fitTable_ = STFit(table_);
[859]225}
226
[805]227Scantable::~Scantable()
[206]228{
[2]229}
230
[805]231void Scantable::setupMainTable()
[206]232{
[805]233  TableDesc td("", "1", TableDesc::Scratch);
234  td.comment() = "An ASAP Scantable";
[1009]235  td.rwKeywordSet().define("VERSION", uInt(version_));
[2]236
[805]237  // n Cycles
238  td.addColumn(ScalarColumnDesc<uInt>("SCANNO"));
239  // new index every nBeam x nIF x nPol
240  td.addColumn(ScalarColumnDesc<uInt>("CYCLENO"));
[2]241
[805]242  td.addColumn(ScalarColumnDesc<uInt>("BEAMNO"));
243  td.addColumn(ScalarColumnDesc<uInt>("IFNO"));
[972]244  // linear, circular, stokes
[805]245  td.rwKeywordSet().define("POLTYPE", String("linear"));
246  td.addColumn(ScalarColumnDesc<uInt>("POLNO"));
[138]247
[805]248  td.addColumn(ScalarColumnDesc<uInt>("FREQ_ID"));
249  td.addColumn(ScalarColumnDesc<uInt>("MOLECULE_ID"));
[80]250
[1819]251  ScalarColumnDesc<Int> refbeamnoColumn("REFBEAMNO");
252  refbeamnoColumn.setDefault(Int(-1));
253  td.addColumn(refbeamnoColumn);
254
255  ScalarColumnDesc<uInt> flagrowColumn("FLAGROW");
256  flagrowColumn.setDefault(uInt(0));
257  td.addColumn(flagrowColumn);
258
[805]259  td.addColumn(ScalarColumnDesc<Double>("TIME"));
260  TableMeasRefDesc measRef(MEpoch::UTC); // UTC as default
261  TableMeasValueDesc measVal(td, "TIME");
262  TableMeasDesc<MEpoch> mepochCol(measVal, measRef);
263  mepochCol.write(td);
[483]264
[805]265  td.addColumn(ScalarColumnDesc<Double>("INTERVAL"));
266
[2]267  td.addColumn(ScalarColumnDesc<String>("SRCNAME"));
[805]268  // Type of source (on=0, off=1, other=-1)
[1503]269  ScalarColumnDesc<Int> stypeColumn("SRCTYPE");
270  stypeColumn.setDefault(Int(-1));
271  td.addColumn(stypeColumn);
[805]272  td.addColumn(ScalarColumnDesc<String>("FIELDNAME"));
273
274  //The actual Data Vectors
[2]275  td.addColumn(ArrayColumnDesc<Float>("SPECTRA"));
276  td.addColumn(ArrayColumnDesc<uChar>("FLAGTRA"));
[89]277  td.addColumn(ArrayColumnDesc<Float>("TSYS"));
[805]278
279  td.addColumn(ArrayColumnDesc<Double>("DIRECTION",
280                                       IPosition(1,2),
281                                       ColumnDesc::Direct));
282  TableMeasRefDesc mdirRef(MDirection::J2000); // default
283  TableMeasValueDesc tmvdMDir(td, "DIRECTION");
284  // the TableMeasDesc gives the column a type
285  TableMeasDesc<MDirection> mdirCol(tmvdMDir, mdirRef);
[987]286  // a uder set table type e.g. GALCTIC, B1950 ...
287  td.rwKeywordSet().define("DIRECTIONREF", String("J2000"));
[805]288  // writing create the measure column
289  mdirCol.write(td);
[923]290  td.addColumn(ScalarColumnDesc<Float>("AZIMUTH"));
291  td.addColumn(ScalarColumnDesc<Float>("ELEVATION"));
[1047]292  td.addColumn(ScalarColumnDesc<Float>("OPACITY"));
[105]293
[805]294  td.addColumn(ScalarColumnDesc<uInt>("TCAL_ID"));
[972]295  ScalarColumnDesc<Int> fitColumn("FIT_ID");
[973]296  fitColumn.setDefault(Int(-1));
[972]297  td.addColumn(fitColumn);
[805]298
299  td.addColumn(ScalarColumnDesc<uInt>("FOCUS_ID"));
300  td.addColumn(ScalarColumnDesc<uInt>("WEATHER_ID"));
301
[999]302  // columns which just get dragged along, as they aren't used in asap
303  td.addColumn(ScalarColumnDesc<Double>("SRCVELOCITY"));
304  td.addColumn(ArrayColumnDesc<Double>("SRCPROPERMOTION"));
305  td.addColumn(ArrayColumnDesc<Double>("SRCDIRECTION"));
306  td.addColumn(ArrayColumnDesc<Double>("SCANRATE"));
307
[805]308  td.rwKeywordSet().define("OBSMODE", String(""));
309
[418]310  // Now create Table SetUp from the description.
[859]311  SetupNewTable aNewTab(generateName(), td, Table::Scratch);
[852]312  table_ = Table(aNewTab, type_, 0);
[805]313  originalTable_ = table_;
314}
[418]315
[805]316void Scantable::attach()
[455]317{
[805]318  timeCol_.attach(table_, "TIME");
319  srcnCol_.attach(table_, "SRCNAME");
[1068]320  srctCol_.attach(table_, "SRCTYPE");
[805]321  specCol_.attach(table_, "SPECTRA");
322  flagsCol_.attach(table_, "FLAGTRA");
[865]323  tsysCol_.attach(table_, "TSYS");
[805]324  cycleCol_.attach(table_,"CYCLENO");
325  scanCol_.attach(table_, "SCANNO");
326  beamCol_.attach(table_, "BEAMNO");
[847]327  ifCol_.attach(table_, "IFNO");
328  polCol_.attach(table_, "POLNO");
[805]329  integrCol_.attach(table_, "INTERVAL");
330  azCol_.attach(table_, "AZIMUTH");
331  elCol_.attach(table_, "ELEVATION");
332  dirCol_.attach(table_, "DIRECTION");
333  fldnCol_.attach(table_, "FIELDNAME");
334  rbeamCol_.attach(table_, "REFBEAMNO");
[455]335
[1730]336  mweatheridCol_.attach(table_,"WEATHER_ID");
[805]337  mfitidCol_.attach(table_,"FIT_ID");
338  mfreqidCol_.attach(table_, "FREQ_ID");
339  mtcalidCol_.attach(table_, "TCAL_ID");
340  mfocusidCol_.attach(table_, "FOCUS_ID");
341  mmolidCol_.attach(table_, "MOLECULE_ID");
[1819]342
343  //Add auxiliary column for row-based flagging (CAS-1433 Wataru Kawasaki)
344  attachAuxColumnDef(flagrowCol_, "FLAGROW", 0);
345
[455]346}
347
[1819]348template<class T, class T2>
349void Scantable::attachAuxColumnDef(ScalarColumn<T>& col,
350                                   const String& colName,
351                                   const T2& defValue)
352{
353  try {
354    col.attach(table_, colName);
355  } catch (TableError& err) {
356    String errMesg = err.getMesg();
357    if (errMesg == "Table column " + colName + " is unknown") {
358      table_.addColumn(ScalarColumnDesc<T>(colName));
359      col.attach(table_, colName);
360      col.fillColumn(static_cast<T>(defValue));
361    } else {
362      throw;
363    }
364  } catch (...) {
365    throw;
366  }
367}
368
369template<class T, class T2>
370void Scantable::attachAuxColumnDef(ArrayColumn<T>& col,
371                                   const String& colName,
372                                   const Array<T2>& defValue)
373{
374  try {
375    col.attach(table_, colName);
376  } catch (TableError& err) {
377    String errMesg = err.getMesg();
378    if (errMesg == "Table column " + colName + " is unknown") {
379      table_.addColumn(ArrayColumnDesc<T>(colName));
380      col.attach(table_, colName);
381
382      int size = 0;
383      ArrayIterator<T2>& it = defValue.begin();
384      while (it != defValue.end()) {
385        ++size;
386        ++it;
387      }
388      IPosition ip(1, size);
389      Array<T>& arr(ip);
390      for (int i = 0; i < size; ++i)
391        arr[i] = static_cast<T>(defValue[i]);
392
393      col.fillColumn(arr);
394    } else {
395      throw;
396    }
397  } catch (...) {
398    throw;
399  }
400}
401
[901]402void Scantable::setHeader(const STHeader& sdh)
[206]403{
[18]404  table_.rwKeywordSet().define("nIF", sdh.nif);
405  table_.rwKeywordSet().define("nBeam", sdh.nbeam);
406  table_.rwKeywordSet().define("nPol", sdh.npol);
407  table_.rwKeywordSet().define("nChan", sdh.nchan);
408  table_.rwKeywordSet().define("Observer", sdh.observer);
409  table_.rwKeywordSet().define("Project", sdh.project);
410  table_.rwKeywordSet().define("Obstype", sdh.obstype);
411  table_.rwKeywordSet().define("AntennaName", sdh.antennaname);
412  table_.rwKeywordSet().define("AntennaPosition", sdh.antennaposition);
413  table_.rwKeywordSet().define("Equinox", sdh.equinox);
414  table_.rwKeywordSet().define("FreqRefFrame", sdh.freqref);
415  table_.rwKeywordSet().define("FreqRefVal", sdh.reffreq);
416  table_.rwKeywordSet().define("Bandwidth", sdh.bandwidth);
417  table_.rwKeywordSet().define("UTC", sdh.utc);
[206]418  table_.rwKeywordSet().define("FluxUnit", sdh.fluxunit);
419  table_.rwKeywordSet().define("Epoch", sdh.epoch);
[905]420  table_.rwKeywordSet().define("POLTYPE", sdh.poltype);
[50]421}
[21]422
[901]423STHeader Scantable::getHeader() const
[206]424{
[901]425  STHeader sdh;
[21]426  table_.keywordSet().get("nBeam",sdh.nbeam);
427  table_.keywordSet().get("nIF",sdh.nif);
428  table_.keywordSet().get("nPol",sdh.npol);
429  table_.keywordSet().get("nChan",sdh.nchan);
430  table_.keywordSet().get("Observer", sdh.observer);
431  table_.keywordSet().get("Project", sdh.project);
432  table_.keywordSet().get("Obstype", sdh.obstype);
433  table_.keywordSet().get("AntennaName", sdh.antennaname);
434  table_.keywordSet().get("AntennaPosition", sdh.antennaposition);
435  table_.keywordSet().get("Equinox", sdh.equinox);
436  table_.keywordSet().get("FreqRefFrame", sdh.freqref);
437  table_.keywordSet().get("FreqRefVal", sdh.reffreq);
438  table_.keywordSet().get("Bandwidth", sdh.bandwidth);
439  table_.keywordSet().get("UTC", sdh.utc);
[206]440  table_.keywordSet().get("FluxUnit", sdh.fluxunit);
441  table_.keywordSet().get("Epoch", sdh.epoch);
[905]442  table_.keywordSet().get("POLTYPE", sdh.poltype);
[21]443  return sdh;
[18]444}
[805]445
[1360]446void Scantable::setSourceType( int stype )
[1068]447{
448  if ( stype < 0 || stype > 1 )
449    throw(AipsError("Illegal sourcetype."));
450  TableVector<Int> tabvec(table_, "SRCTYPE");
451  tabvec = Int(stype);
452}
453
[845]454bool Scantable::conformant( const Scantable& other )
455{
456  return this->getHeader().conformant(other.getHeader());
457}
458
459
[50]460
[805]461std::string Scantable::formatSec(Double x) const
[206]462{
[105]463  Double xcop = x;
464  MVTime mvt(xcop/24./3600.);  // make days
[365]465
[105]466  if (x < 59.95)
[281]467    return  String("      ") + mvt.string(MVTime::TIME_CLEAN_NO_HM, 7)+"s";
[745]468  else if (x < 3599.95)
[281]469    return String("   ") + mvt.string(MVTime::TIME_CLEAN_NO_H,7)+" ";
470  else {
471    ostringstream oss;
472    oss << setw(2) << std::right << setprecision(1) << mvt.hour();
473    oss << ":" << mvt.string(MVTime::TIME_CLEAN_NO_H,7) << " ";
474    return String(oss);
[745]475  }
[105]476};
477
[805]478std::string Scantable::formatDirection(const MDirection& md) const
[281]479{
480  Vector<Double> t = md.getAngle(Unit(String("rad"))).getValue();
481  Int prec = 7;
482
[2575]483  String ref = md.getRefString();
[281]484  MVAngle mvLon(t[0]);
485  String sLon = mvLon.string(MVAngle::TIME,prec);
[987]486  uInt tp = md.getRef().getType();
487  if (tp == MDirection::GALACTIC ||
488      tp == MDirection::SUPERGAL ) {
489    sLon = mvLon(0.0).string(MVAngle::ANGLE_CLEAN,prec);
490  }
[281]491  MVAngle mvLat(t[1]);
492  String sLat = mvLat.string(MVAngle::ANGLE+MVAngle::DIG2,prec);
[2575]493  return  ref + String(" ") + sLon + String(" ") + sLat;
[281]494}
495
496
[805]497std::string Scantable::getFluxUnit() const
[206]498{
[847]499  return table_.keywordSet().asString("FluxUnit");
[206]500}
501
[805]502void Scantable::setFluxUnit(const std::string& unit)
[218]503{
504  String tmp(unit);
505  Unit tU(tmp);
506  if (tU==Unit("K") || tU==Unit("Jy")) {
507     table_.rwKeywordSet().define(String("FluxUnit"), tmp);
508  } else {
509     throw AipsError("Illegal unit - must be compatible with Jy or K");
510  }
511}
512
[805]513void Scantable::setInstrument(const std::string& name)
[236]514{
[805]515  bool throwIt = true;
[996]516  // create an Instrument to see if this is valid
517  STAttr::convertInstrument(name, throwIt);
[236]518  String nameU(name);
519  nameU.upcase();
520  table_.rwKeywordSet().define(String("AntennaName"), nameU);
521}
522
[1189]523void Scantable::setFeedType(const std::string& feedtype)
524{
525  if ( Scantable::factories_.find(feedtype) ==  Scantable::factories_.end() ) {
526    std::string msg = "Illegal feed type "+ feedtype;
527    throw(casa::AipsError(msg));
528  }
529  table_.rwKeywordSet().define(String("POLTYPE"), feedtype);
530}
531
[1743]532MPosition Scantable::getAntennaPosition() const
[805]533{
534  Vector<Double> antpos;
535  table_.keywordSet().get("AntennaPosition", antpos);
536  MVPosition mvpos(antpos(0),antpos(1),antpos(2));
537  return MPosition(mvpos);
538}
[281]539
[805]540void Scantable::makePersistent(const std::string& filename)
541{
542  String inname(filename);
543  Path path(inname);
[1111]544  /// @todo reindex SCANNO, recompute nbeam, nif, npol
[805]545  inname = path.expandedName();
[2030]546  // 2011/03/04 TN
547  // We can comment out this workaround since the essential bug is
548  // fixed in casacore (r20889 in google code).
549  table_.deepCopy(inname, Table::New);
550//   // WORKAROUND !!! for Table bug
551//   // Remove when fixed in casacore
552//   if ( table_.tableType() == Table::Memory  && !selector_.empty() ) {
553//     Table tab = table_.copyToMemoryTable(generateName());
554//     tab.deepCopy(inname, Table::New);
555//     tab.markForDelete();
556//
557//   } else {
558//     table_.deepCopy(inname, Table::New);
559//   }
[805]560}
561
[837]562int Scantable::nbeam( int scanno ) const
[805]563{
564  if ( scanno < 0 ) {
565    Int n;
566    table_.keywordSet().get("nBeam",n);
567    return int(n);
[105]568  } else {
[805]569    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
[888]570    Table t = table_(table_.col("SCANNO") == scanno);
571    ROTableRow row(t);
572    const TableRecord& rec = row.get(0);
573    Table subt = t( t.col("IFNO") == Int(rec.asuInt("IFNO"))
574                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
575                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
576    ROTableVector<uInt> v(subt, "BEAMNO");
[805]577    return int(v.nelements());
[105]578  }
[805]579  return 0;
580}
[455]581
[837]582int Scantable::nif( int scanno ) const
[805]583{
584  if ( scanno < 0 ) {
585    Int n;
586    table_.keywordSet().get("nIF",n);
587    return int(n);
588  } else {
589    // take the first POLNO,BEAMNO,CYCLENO as nbeam shouldn't vary with these
[888]590    Table t = table_(table_.col("SCANNO") == scanno);
591    ROTableRow row(t);
592    const TableRecord& rec = row.get(0);
593    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
594                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
595                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
596    if ( subt.nrow() == 0 ) return 0;
597    ROTableVector<uInt> v(subt, "IFNO");
[805]598    return int(v.nelements());
[2]599  }
[805]600  return 0;
601}
[321]602
[837]603int Scantable::npol( int scanno ) const
[805]604{
605  if ( scanno < 0 ) {
606    Int n;
607    table_.keywordSet().get("nPol",n);
608    return n;
609  } else {
610    // take the first POLNO,IFNO,CYCLENO as nbeam shouldn't vary with these
[888]611    Table t = table_(table_.col("SCANNO") == scanno);
612    ROTableRow row(t);
613    const TableRecord& rec = row.get(0);
614    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
615                    && t.col("IFNO") == Int(rec.asuInt("IFNO"))
616                    && t.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
617    if ( subt.nrow() == 0 ) return 0;
618    ROTableVector<uInt> v(subt, "POLNO");
[805]619    return int(v.nelements());
[321]620  }
[805]621  return 0;
[2]622}
[805]623
[845]624int Scantable::ncycle( int scanno ) const
[206]625{
[805]626  if ( scanno < 0 ) {
[837]627    Block<String> cols(2);
628    cols[0] = "SCANNO";
629    cols[1] = "CYCLENO";
630    TableIterator it(table_, cols);
631    int n = 0;
632    while ( !it.pastEnd() ) {
633      ++n;
[902]634      ++it;
[837]635    }
636    return n;
[805]637  } else {
[888]638    Table t = table_(table_.col("SCANNO") == scanno);
639    ROTableRow row(t);
640    const TableRecord& rec = row.get(0);
641    Table subt = t( t.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
642                    && t.col("POLNO") == Int(rec.asuInt("POLNO"))
643                    && t.col("IFNO") == Int(rec.asuInt("IFNO")) );
644    if ( subt.nrow() == 0 ) return 0;
645    return int(subt.nrow());
[805]646  }
647  return 0;
[18]648}
[455]649
650
[845]651int Scantable::nrow( int scanno ) const
[805]652{
[845]653  return int(table_.nrow());
654}
655
656int Scantable::nchan( int ifno ) const
657{
658  if ( ifno < 0 ) {
[805]659    Int n;
660    table_.keywordSet().get("nChan",n);
661    return int(n);
662  } else {
[1360]663    // take the first SCANNO,POLNO,BEAMNO,CYCLENO as nbeam shouldn't
664    // vary with these
[2244]665    Table t = table_(table_.col("IFNO") == ifno, 1);
[888]666    if ( t.nrow() == 0 ) return 0;
667    ROArrayColumn<Float> v(t, "SPECTRA");
[923]668    return v.shape(0)(0);
[805]669  }
670  return 0;
[18]671}
[455]672
[1111]673int Scantable::nscan() const {
674  Vector<uInt> scannos(scanCol_.getColumn());
[1148]675  uInt nout = genSort( scannos, Sort::Ascending,
[1111]676                       Sort::QuickSort|Sort::NoDuplicates );
677  return int(nout);
678}
679
[923]680int Scantable::getChannels(int whichrow) const
681{
682  return specCol_.shape(whichrow)(0);
683}
[847]684
685int Scantable::getBeam(int whichrow) const
686{
687  return beamCol_(whichrow);
688}
689
[1694]690std::vector<uint> Scantable::getNumbers(const ScalarColumn<uInt>& col) const
[1111]691{
692  Vector<uInt> nos(col.getColumn());
[1148]693  uInt n = genSort( nos, Sort::Ascending, Sort::QuickSort|Sort::NoDuplicates );
694  nos.resize(n, True);
[1111]695  std::vector<uint> stlout;
696  nos.tovector(stlout);
697  return stlout;
698}
699
[847]700int Scantable::getIF(int whichrow) const
701{
702  return ifCol_(whichrow);
703}
704
705int Scantable::getPol(int whichrow) const
706{
707  return polCol_(whichrow);
708}
709
[805]710std::string Scantable::formatTime(const MEpoch& me, bool showdate) const
711{
[1947]712  return formatTime(me, showdate, 0);
713}
714
715std::string Scantable::formatTime(const MEpoch& me, bool showdate, uInt prec) const
716{
[805]717  MVTime mvt(me.getValue());
718  if (showdate)
[1947]719    //mvt.setFormat(MVTime::YMD);
720    mvt.setFormat(MVTime::YMD, prec);
[805]721  else
[1947]722    //mvt.setFormat(MVTime::TIME);
723    mvt.setFormat(MVTime::TIME, prec);
[805]724  ostringstream oss;
725  oss << mvt;
726  return String(oss);
727}
[488]728
[805]729void Scantable::calculateAZEL()
[2658]730
731  LogIO os( LogOrigin( "Scantable", "calculateAZEL()", WHERE ) ) ;
[805]732  MPosition mp = getAntennaPosition();
733  MEpoch::ROScalarColumn timeCol(table_, "TIME");
734  ostringstream oss;
[2658]735  oss << mp;
736  os << "Computed azimuth/elevation using " << endl
737     << String(oss) << endl;
[996]738  for (Int i=0; i<nrow(); ++i) {
[805]739    MEpoch me = timeCol(i);
[987]740    MDirection md = getDirection(i);
[2658]741    os  << " Time: " << formatTime(me,False)
742        << " Direction: " << formatDirection(md)
[805]743         << endl << "     => ";
744    MeasFrame frame(mp, me);
745    Vector<Double> azel =
746        MDirection::Convert(md, MDirection::Ref(MDirection::AZEL,
747                                                frame)
748                            )().getAngle("rad").getValue();
[923]749    azCol_.put(i,Float(azel[0]));
750    elCol_.put(i,Float(azel[1]));
[2658]751    os << "azel: " << azel[0]/C::pi*180.0 << " "
752       << azel[1]/C::pi*180.0 << " (deg)" << LogIO::POST;
[16]753  }
[805]754}
[89]755
[1819]756void Scantable::clip(const Float uthres, const Float dthres, bool clipoutside, bool unflag)
757{
758  for (uInt i=0; i<table_.nrow(); ++i) {
759    Vector<uChar> flgs = flagsCol_(i);
760    srchChannelsToClip(i, uthres, dthres, clipoutside, unflag, flgs);
761    flagsCol_.put(i, flgs);
762  }
763}
764
765std::vector<bool> Scantable::getClipMask(int whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag)
766{
767  Vector<uChar> flags;
768  flagsCol_.get(uInt(whichrow), flags);
769  srchChannelsToClip(uInt(whichrow), uthres, dthres, clipoutside, unflag, flags);
770  Vector<Bool> bflag(flags.shape());
771  convertArray(bflag, flags);
772  //bflag = !bflag;
773
774  std::vector<bool> mask;
775  bflag.tovector(mask);
776  return mask;
777}
778
779void Scantable::srchChannelsToClip(uInt whichrow, const Float uthres, const Float dthres, bool clipoutside, bool unflag,
780                                   Vector<uChar> flgs)
781{
782    Vector<Float> spcs = specCol_(whichrow);
[2348]783    uInt nchannel = spcs.nelements();
[1819]784    if (spcs.nelements() != nchannel) {
785      throw(AipsError("Data has incorrect number of channels"));
786    }
787    uChar userflag = 1 << 7;
788    if (unflag) {
789      userflag = 0 << 7;
790    }
791    if (clipoutside) {
792      for (uInt j = 0; j < nchannel; ++j) {
793        Float spc = spcs(j);
794        if ((spc >= uthres) || (spc <= dthres)) {
795          flgs(j) = userflag;
796        }
797      }
798    } else {
799      for (uInt j = 0; j < nchannel; ++j) {
800        Float spc = spcs(j);
801        if ((spc < uthres) && (spc > dthres)) {
802          flgs(j) = userflag;
803        }
804      }
805    }
806}
807
[1994]808
809void Scantable::flag( int whichrow, const std::vector<bool>& msk, bool unflag ) {
[1333]810  std::vector<bool>::const_iterator it;
811  uInt ntrue = 0;
[1994]812  if (whichrow >= int(table_.nrow()) ) {
813    throw(AipsError("Invalid row number"));
814  }
[1333]815  for (it = msk.begin(); it != msk.end(); ++it) {
816    if ( *it ) {
817      ntrue++;
818    }
819  }
[1994]820  //if ( selector_.empty()  && (msk.size() == 0 || msk.size() == ntrue) )
821  if ( whichrow == -1 && !unflag && selector_.empty() && (msk.size() == 0 || msk.size() == ntrue) )
[1000]822    throw(AipsError("Trying to flag whole scantable."));
[1994]823  uChar userflag = 1 << 7;
824  if ( unflag ) {
825    userflag = 0 << 7;
826  }
827  if (whichrow > -1 ) {
828    applyChanFlag(uInt(whichrow), msk, userflag);
829  } else {
[1000]830    for ( uInt i=0; i<table_.nrow(); ++i) {
[1994]831      applyChanFlag(i, msk, userflag);
[1000]832    }
[1994]833  }
834}
835
836void Scantable::applyChanFlag( uInt whichrow, const std::vector<bool>& msk, uChar flagval )
837{
838  if (whichrow >= table_.nrow() ) {
839    throw( casa::indexError<int>( whichrow, "asap::Scantable::applyChanFlag: Invalid row number" ) );
840  }
841  Vector<uChar> flgs = flagsCol_(whichrow);
842  if ( msk.size() == 0 ) {
843    flgs = flagval;
844    flagsCol_.put(whichrow, flgs);
[1000]845    return;
846  }
[2348]847  if ( int(msk.size()) != nchan( getIF(whichrow) ) ) {
[1000]848    throw(AipsError("Mask has incorrect number of channels."));
849  }
[1994]850  if ( flgs.nelements() != msk.size() ) {
851    throw(AipsError("Mask has incorrect number of channels."
852                    " Probably varying with IF. Please flag per IF"));
853  }
854  std::vector<bool>::const_iterator it;
855  uInt j = 0;
856  for (it = msk.begin(); it != msk.end(); ++it) {
857    if ( *it ) {
858      flgs(j) = flagval;
[1000]859    }
[1994]860    ++j;
[1000]861  }
[1994]862  flagsCol_.put(whichrow, flgs);
[865]863}
864
[1819]865void Scantable::flagRow(const std::vector<uInt>& rows, bool unflag)
866{
[2683]867  if (selector_.empty() && (rows.size() == table_.nrow()) && !unflag)
[1819]868    throw(AipsError("Trying to flag whole scantable."));
869
870  uInt rowflag = (unflag ? 0 : 1);
871  std::vector<uInt>::const_iterator it;
872  for (it = rows.begin(); it != rows.end(); ++it)
873    flagrowCol_.put(*it, rowflag);
874}
875
[805]876std::vector<bool> Scantable::getMask(int whichrow) const
877{
878  Vector<uChar> flags;
879  flagsCol_.get(uInt(whichrow), flags);
880  Vector<Bool> bflag(flags.shape());
881  convertArray(bflag, flags);
882  bflag = !bflag;
883  std::vector<bool> mask;
884  bflag.tovector(mask);
885  return mask;
886}
[89]887
[896]888std::vector<float> Scantable::getSpectrum( int whichrow,
[902]889                                           const std::string& poltype ) const
[805]890{
[2658]891  LogIO os( LogOrigin( "Scantable", "getSpectrum()", WHERE ) ) ;
892
[905]893  String ptype = poltype;
894  if (poltype == "" ) ptype = getPolType();
[902]895  if ( whichrow  < 0 || whichrow >= nrow() )
896    throw(AipsError("Illegal row number."));
[896]897  std::vector<float> out;
[805]898  Vector<Float> arr;
[896]899  uInt requestedpol = polCol_(whichrow);
900  String basetype = getPolType();
[905]901  if ( ptype == basetype ) {
[896]902    specCol_.get(whichrow, arr);
903  } else {
[1598]904    CountedPtr<STPol> stpol(STPol::getPolClass(Scantable::factories_,
[1586]905                                               basetype));
[1334]906    uInt row = uInt(whichrow);
907    stpol->setSpectra(getPolMatrix(row));
[2047]908    Float fang,fhand;
[1586]909    fang = focusTable_.getTotalAngle(mfocusidCol_(row));
[1334]910    fhand = focusTable_.getFeedHand(mfocusidCol_(row));
[1586]911    stpol->setPhaseCorrections(fang, fhand);
[1334]912    arr = stpol->getSpectrum(requestedpol, ptype);
[896]913  }
[902]914  if ( arr.nelements() == 0 )
[2658]915   
916    os << "Not enough polarisations present to do the conversion."
917       << LogIO::POST;
[805]918  arr.tovector(out);
919  return out;
[89]920}
[212]921
[1360]922void Scantable::setSpectrum( const std::vector<float>& spec,
[884]923                                   int whichrow )
924{
925  Vector<Float> spectrum(spec);
926  Vector<Float> arr;
927  specCol_.get(whichrow, arr);
928  if ( spectrum.nelements() != arr.nelements() )
[896]929    throw AipsError("The spectrum has incorrect number of channels.");
[884]930  specCol_.put(whichrow, spectrum);
931}
932
933
[805]934String Scantable::generateName()
[745]935{
[805]936  return (File::newUniqueName("./","temp")).baseName();
[212]937}
938
[805]939const casa::Table& Scantable::table( ) const
[212]940{
[805]941  return table_;
[212]942}
943
[805]944casa::Table& Scantable::table( )
[386]945{
[805]946  return table_;
[386]947}
948
[896]949std::string Scantable::getPolType() const
950{
951  return table_.keywordSet().asString("POLTYPE");
952}
953
[805]954void Scantable::unsetSelection()
[380]955{
[805]956  table_ = originalTable_;
[847]957  attach();
[805]958  selector_.reset();
[380]959}
[386]960
[805]961void Scantable::setSelection( const STSelector& selection )
[430]962{
[805]963  Table tab = const_cast<STSelector&>(selection).apply(originalTable_);
964  if ( tab.nrow() == 0 ) {
965    throw(AipsError("Selection contains no data. Not applying it."));
966  }
967  table_ = tab;
[847]968  attach();
[2084]969//   tab.rwKeywordSet().define("nBeam",(Int)(getBeamNos().size())) ;
970//   vector<uint> selectedIFs = getIFNos() ;
971//   Int newnIF = selectedIFs.size() ;
972//   tab.rwKeywordSet().define("nIF",newnIF) ;
973//   if ( newnIF != 0 ) {
974//     Int newnChan = 0 ;
975//     for ( Int i = 0 ; i < newnIF ; i++ ) {
976//       Int nChan = nchan( selectedIFs[i] ) ;
977//       if ( newnChan > nChan )
978//         newnChan = nChan ;
979//     }
980//     tab.rwKeywordSet().define("nChan",newnChan) ;
981//   }
982//   tab.rwKeywordSet().define("nPol",(Int)(getPolNos().size())) ;
[805]983  selector_ = selection;
[430]984}
985
[2111]986
[2163]987std::string Scantable::headerSummary()
[447]988{
[805]989  // Format header info
[2111]990//   STHeader sdh;
991//   sdh = getHeader();
992//   sdh.print();
[805]993  ostringstream oss;
994  oss.flags(std::ios_base::left);
[2290]995  String tmp;
996  // Project
997  table_.keywordSet().get("Project", tmp);
998  oss << setw(15) << "Project:" << tmp << endl;
999  // Observation date
1000  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1001  // Observer
1002  oss << setw(15) << "Observer:"
1003      << table_.keywordSet().asString("Observer") << endl;
1004  // Antenna Name
1005  table_.keywordSet().get("AntennaName", tmp);
1006  oss << setw(15) << "Antenna Name:" << tmp << endl;
1007  // Obs type
1008  table_.keywordSet().get("Obstype", tmp);
1009  // Records (nrow)
1010  oss << setw(15) << "Data Records:" << table_.nrow() << " rows" << endl;
1011  oss << setw(15) << "Obs. Type:" << tmp << endl;
1012  // Beams, IFs, Polarizations, and Channels
[805]1013  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1014      << setw(15) << "IFs:" << setw(4) << nif() << endl
[896]1015      << setw(15) << "Polarisations:" << setw(4) << npol()
1016      << "(" << getPolType() << ")" << endl
[1694]1017      << setw(15) << "Channels:" << nchan() << endl;
[2290]1018  // Flux unit
1019  table_.keywordSet().get("FluxUnit", tmp);
1020  oss << setw(15) << "Flux Unit:" << tmp << endl;
1021  // Abscissa Unit
1022  oss << setw(15) << "Abscissa:" << getAbcissaLabel(0) << endl;
1023  // Selection
1024  oss << selector_.print() << endl;
1025
1026  return String(oss);
1027}
1028
1029void Scantable::summary( const std::string& filename )
1030{
1031  ostringstream oss;
1032  ofstream ofs;
1033  LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1034
1035  if (filename != "")
1036    ofs.open( filename.c_str(),  ios::out );
1037
1038  oss << endl;
1039  oss << asap::SEPERATOR << endl;
1040  oss << " Scan Table Summary" << endl;
1041  oss << asap::SEPERATOR << endl;
1042
1043  // Format header info
1044  oss << headerSummary();
1045  oss << endl;
1046
1047  if (table_.nrow() <= 0){
1048    oss << asap::SEPERATOR << endl;
1049    oss << "The MAIN table is empty: there are no data!!!" << endl;
1050    oss << asap::SEPERATOR << endl;
1051
1052    ols << String(oss) << LogIO::POST;
1053    if (ofs) {
1054      ofs << String(oss) << flush;
1055      ofs.close();
1056    }
1057    return;
1058  }
1059
1060
1061
1062  // main table
1063  String dirtype = "Position ("
1064                  + getDirectionRefString()
1065                  + ")";
1066  oss.flags(std::ios_base::left);
1067  oss << setw(5) << "Scan"
1068      << setw(15) << "Source"
1069      << setw(35) << "Time range"
1070      << setw(2) << "" << setw(7) << "Int[s]"
1071      << setw(7) << "Record"
1072      << setw(8) << "SrcType"
1073      << setw(8) << "FreqIDs"
1074      << setw(7) << "MolIDs" << endl;
1075  oss << setw(7)<< "" << setw(6) << "Beam"
1076      << setw(23) << dirtype << endl;
1077
1078  oss << asap::SEPERATOR << endl;
1079
1080  // Flush summary and clear up the string
1081  ols << String(oss) << LogIO::POST;
1082  if (ofs) ofs << String(oss) << flush;
1083  oss.str("");
1084  oss.clear();
1085
1086
1087  // Get Freq_ID map
1088  ROScalarColumn<uInt> ftabIds(frequencies().table(), "ID");
1089  Int nfid = ftabIds.nrow();
1090  if (nfid <= 0){
1091    oss << "FREQUENCIES subtable is empty: there are no data!!!" << endl;
1092    oss << asap::SEPERATOR << endl;
1093
1094    ols << String(oss) << LogIO::POST;
1095    if (ofs) {
1096      ofs << String(oss) << flush;
1097      ofs.close();
1098    }
1099    return;
1100  }
1101  // Storages of overall IFNO, POLNO, and nchan per FREQ_ID
1102  // the orders are identical to ID in FREQ subtable
1103  Block< Vector<uInt> > ifNos(nfid), polNos(nfid);
1104  Vector<Int> fIdchans(nfid,-1);
1105  map<uInt, Int> fidMap;  // (FREQ_ID, row # in FREQ subtable) pair
1106  for (Int i=0; i < nfid; i++){
1107   // fidMap[freqId] returns row number in FREQ subtable
1108   fidMap.insert(pair<uInt, Int>(ftabIds(i),i));
1109   ifNos[i] = Vector<uInt>();
1110   polNos[i] = Vector<uInt>();
1111  }
1112
1113  TableIterator iter(table_, "SCANNO");
1114
1115  // Vars for keeping track of time, freqids, molIds in a SCANNO
1116  Vector<uInt> freqids;
1117  Vector<uInt> molids;
1118  Vector<uInt> beamids(1,0);
1119  Vector<MDirection> beamDirs;
1120  Vector<Int> stypeids(1,0);
1121  Vector<String> stypestrs;
1122  Int nfreq(1);
1123  Int nmol(1);
1124  uInt nbeam(1);
1125  uInt nstype(1);
1126
1127  Double btime(0.0), etime(0.0);
1128  Double meanIntTim(0.0);
1129
1130  uInt currFreqId(0), ftabRow(0);
1131  Int iflen(0), pollen(0);
1132
1133  while (!iter.pastEnd()) {
1134    Table subt = iter.table();
1135    uInt snrow = subt.nrow();
1136    ROTableRow row(subt);
1137    const TableRecord& rec = row.get(0);
1138
1139    // relevant columns
1140    ROScalarColumn<Double> mjdCol(subt,"TIME");
1141    ROScalarColumn<Double> intervalCol(subt,"INTERVAL");
1142    MDirection::ROScalarColumn dirCol(subt,"DIRECTION");
1143
1144    ScalarColumn<uInt> freqIdCol(subt,"FREQ_ID");
1145    ScalarColumn<uInt> molIdCol(subt,"MOLECULE_ID");
1146    ROScalarColumn<uInt> beamCol(subt,"BEAMNO");
1147    ROScalarColumn<Int> stypeCol(subt,"SRCTYPE");
1148
1149    ROScalarColumn<uInt> ifNoCol(subt,"IFNO");
1150    ROScalarColumn<uInt> polNoCol(subt,"POLNO");
1151
1152
1153    // Times
1154    meanIntTim = sum(intervalCol.getColumn()) / (double) snrow;
1155    minMax(btime, etime, mjdCol.getColumn());
1156    etime += meanIntTim/C::day;
1157
1158    // MOLECULE_ID and FREQ_ID
1159    molids = getNumbers(molIdCol);
1160    molids.shape(nmol);
1161
1162    freqids = getNumbers(freqIdCol);
1163    freqids.shape(nfreq);
1164
1165    // Add first beamid, and srcNames
1166    beamids.resize(1,False);
1167    beamDirs.resize(1,False);
1168    beamids(0)=beamCol(0);
1169    beamDirs(0)=dirCol(0);
1170    nbeam = 1;
1171
1172    stypeids.resize(1,False);
1173    stypeids(0)=stypeCol(0);
1174    nstype = 1;
1175
1176    // Global listings of nchan/IFNO/POLNO per FREQ_ID
1177    currFreqId=freqIdCol(0);
1178    ftabRow = fidMap[currFreqId];
1179    // Assumes an identical number of channels per FREQ_ID
1180    if (fIdchans(ftabRow) < 0 ) {
1181      RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1182      fIdchans(ftabRow)=(*spec).shape()(0);
1183    }
1184    // Should keep ifNos and polNos form the previous SCANNO
1185    if ( !anyEQ(ifNos[ftabRow],ifNoCol(0)) ) {
1186      ifNos[ftabRow].shape(iflen);
1187      iflen++;
1188      ifNos[ftabRow].resize(iflen,True);
1189      ifNos[ftabRow](iflen-1) = ifNoCol(0);
1190    }
1191    if ( !anyEQ(polNos[ftabRow],polNoCol(0)) ) {
1192      polNos[ftabRow].shape(pollen);
1193      pollen++;
1194      polNos[ftabRow].resize(pollen,True);
1195      polNos[ftabRow](pollen-1) = polNoCol(0);
1196    }
1197
1198    for (uInt i=1; i < snrow; i++){
1199      // Need to list BEAMNO and DIRECTION in the same order
1200      if ( !anyEQ(beamids,beamCol(i)) ) {
1201        nbeam++;
1202        beamids.resize(nbeam,True);
1203        beamids(nbeam-1)=beamCol(i);
1204        beamDirs.resize(nbeam,True);
1205        beamDirs(nbeam-1)=dirCol(i);
1206      }
1207
1208      // SRCTYPE is Int (getNumber takes only uInt)
1209      if ( !anyEQ(stypeids,stypeCol(i)) ) {
1210        nstype++;
1211        stypeids.resize(nstype,True);
1212        stypeids(nstype-1)=stypeCol(i);
1213      }
1214
1215      // Global listings of nchan/IFNO/POLNO per FREQ_ID
1216      currFreqId=freqIdCol(i);
1217      ftabRow = fidMap[currFreqId];
1218      if (fIdchans(ftabRow) < 0 ) {
1219        const TableRecord& rec = row.get(i);
1220        RORecordFieldPtr< Array<Float> > spec(rec, "SPECTRA");
1221        fIdchans(ftabRow) = (*spec).shape()(0);
1222      }
1223      if ( !anyEQ(ifNos[ftabRow],ifNoCol(i)) ) {
1224        ifNos[ftabRow].shape(iflen);
1225        iflen++;
1226        ifNos[ftabRow].resize(iflen,True);
1227        ifNos[ftabRow](iflen-1) = ifNoCol(i);
1228      }
1229      if ( !anyEQ(polNos[ftabRow],polNoCol(i)) ) {
1230        polNos[ftabRow].shape(pollen);
1231        pollen++;
1232        polNos[ftabRow].resize(pollen,True);
1233        polNos[ftabRow](pollen-1) = polNoCol(i);
1234      }
1235    } // end of row iteration
1236
1237    stypestrs.resize(nstype,False);
1238    for (uInt j=0; j < nstype; j++)
1239      stypestrs(j) = SrcType::getName(stypeids(j));
1240
1241    // Format Scan summary
1242    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1243        << std::left << setw(1) << ""
1244        << setw(15) << rec.asString("SRCNAME")
1245        << setw(21) << MVTime(btime).string(MVTime::YMD,7)
1246        << setw(3) << " - " << MVTime(etime).string(MVTime::TIME,7)
1247        << setw(3) << "" << setw(6) << meanIntTim << setw(1) << ""
1248        << std::right << setw(5) << snrow << setw(2) << ""
1249        << std::left << stypestrs << setw(1) << ""
1250        << freqids << setw(1) << ""
1251        << molids  << endl;
1252    // Format Beam summary
1253    for (uInt j=0; j < nbeam; j++) {
1254      oss << setw(7) << "" << setw(6) << beamids(j) << setw(1) << ""
1255          << formatDirection(beamDirs(j)) << endl;
1256    }
1257    // Flush summary every scan and clear up the string
1258    ols << String(oss) << LogIO::POST;
1259    if (ofs) ofs << String(oss) << flush;
1260    oss.str("");
1261    oss.clear();
1262
1263    ++iter;
1264  } // end of scan iteration
1265  oss << asap::SEPERATOR << endl;
1266 
1267  // List FRECUENCIES Table (using STFrequencies.print may be slow)
1268  oss << "FREQUENCIES: " << nfreq << endl;
1269  oss << std::right << setw(5) << "ID" << setw(2) << ""
1270      << std::left  << setw(5) << "IFNO" << setw(2) << ""
1271      << setw(8) << "Frame"
1272      << setw(16) << "RefVal"
1273      << setw(7) << "RefPix"
1274      << setw(15) << "Increment"
1275      << setw(9) << "Channels"
1276      << setw(6) << "POLNOs" << endl;
1277  Int tmplen;
1278  for (Int i=0; i < nfid; i++){
1279    // List row=i of FREQUENCIES subtable
1280    ifNos[i].shape(tmplen);
[2531]1281    if (tmplen >= 1) {
[2290]1282      oss << std::right << setw(5) << ftabIds(i) << setw(2) << ""
1283          << setw(3) << ifNos[i](0) << setw(1) << ""
1284          << std::left << setw(46) << frequencies().print(ftabIds(i))
1285          << setw(2) << ""
1286          << std::right << setw(8) << fIdchans[i] << setw(2) << ""
[2531]1287          << std::left << polNos[i];
1288      if (tmplen > 1) {
1289        oss  << " (" << tmplen << " chains)";
1290      }
1291      oss << endl;
[2290]1292    }
[2531]1293   
[2290]1294  }
1295  oss << asap::SEPERATOR << endl;
1296
1297  // List MOLECULES Table (currently lists all rows)
1298  oss << "MOLECULES: " << endl;
1299  if (molecules().nrow() <= 0) {
1300    oss << "   MOLECULES subtable is empty: there are no data" << endl;
1301  } else {
1302    ROTableRow row(molecules().table());
1303    oss << std::right << setw(5) << "ID"
1304        << std::left << setw(3) << ""
1305        << setw(18) << "RestFreq"
1306        << setw(15) << "Name" << endl;
1307    for (Int i=0; i < molecules().nrow(); i++){
1308      const TableRecord& rec=row.get(i);
1309      oss << std::right << setw(5) << rec.asuInt("ID")
1310          << std::left << setw(3) << ""
1311          << rec.asArrayDouble("RESTFREQUENCY") << setw(1) << ""
1312          << rec.asArrayString("NAME") << endl;
1313    }
1314  }
1315  oss << asap::SEPERATOR << endl;
1316  ols << String(oss) << LogIO::POST;
1317  if (ofs) {
1318    ofs << String(oss) << flush;
1319    ofs.close();
1320  }
1321  //  return String(oss);
1322}
1323
1324
1325std::string Scantable::oldheaderSummary()
1326{
1327  // Format header info
1328//   STHeader sdh;
1329//   sdh = getHeader();
1330//   sdh.print();
1331  ostringstream oss;
1332  oss.flags(std::ios_base::left);
1333  oss << setw(15) << "Beams:" << setw(4) << nbeam() << endl
1334      << setw(15) << "IFs:" << setw(4) << nif() << endl
1335      << setw(15) << "Polarisations:" << setw(4) << npol()
1336      << "(" << getPolType() << ")" << endl
1337      << setw(15) << "Channels:" << nchan() << endl;
[805]1338  String tmp;
[860]1339  oss << setw(15) << "Observer:"
1340      << table_.keywordSet().asString("Observer") << endl;
[805]1341  oss << setw(15) << "Obs Date:" << getTime(-1,true) << endl;
1342  table_.keywordSet().get("Project", tmp);
1343  oss << setw(15) << "Project:" << tmp << endl;
1344  table_.keywordSet().get("Obstype", tmp);
1345  oss << setw(15) << "Obs. Type:" << tmp << endl;
1346  table_.keywordSet().get("AntennaName", tmp);
1347  oss << setw(15) << "Antenna Name:" << tmp << endl;
1348  table_.keywordSet().get("FluxUnit", tmp);
1349  oss << setw(15) << "Flux Unit:" << tmp << endl;
[1819]1350  int nid = moleculeTable_.nrow();
1351  Bool firstline = True;
[805]1352  oss << setw(15) << "Rest Freqs:";
[1819]1353  for (int i=0; i<nid; i++) {
[2244]1354    Table t = table_(table_.col("MOLECULE_ID") == i, 1);
[1819]1355      if (t.nrow() >  0) {
1356          Vector<Double> vec(moleculeTable_.getRestFrequency(i));
1357          if (vec.nelements() > 0) {
1358               if (firstline) {
1359                   oss << setprecision(10) << vec << " [Hz]" << endl;
1360                   firstline=False;
1361               }
1362               else{
1363                   oss << setw(15)<<" " << setprecision(10) << vec << " [Hz]" << endl;
1364               }
1365          } else {
1366              oss << "none" << endl;
1367          }
1368      }
[805]1369  }
[941]1370
1371  oss << setw(15) << "Abcissa:" << getAbcissaLabel(0) << endl;
[805]1372  oss << selector_.print() << endl;
[2111]1373  return String(oss);
1374}
1375
[2286]1376  //std::string Scantable::summary( const std::string& filename )
[2290]1377void Scantable::oldsummary( const std::string& filename )
[2111]1378{
1379  ostringstream oss;
[2286]1380  ofstream ofs;
1381  LogIO ols(LogOrigin("Scantable", "summary", WHERE));
1382
1383  if (filename != "")
1384    ofs.open( filename.c_str(),  ios::out );
1385
[805]1386  oss << endl;
[2111]1387  oss << asap::SEPERATOR << endl;
1388  oss << " Scan Table Summary" << endl;
1389  oss << asap::SEPERATOR << endl;
1390
1391  // Format header info
[2290]1392  oss << oldheaderSummary();
[2111]1393  oss << endl;
1394
[805]1395  // main table
1396  String dirtype = "Position ("
[987]1397                  + getDirectionRefString()
[805]1398                  + ")";
[2111]1399  oss.flags(std::ios_base::left);
[941]1400  oss << setw(5) << "Scan" << setw(15) << "Source"
[2005]1401      << setw(10) << "Time" << setw(18) << "Integration"
1402      << setw(15) << "Source Type" << endl;
[941]1403  oss << setw(5) << "" << setw(5) << "Beam" << setw(3) << "" << dirtype << endl;
[1694]1404  oss << setw(10) << "" << setw(3) << "IF" << setw(3) << ""
[805]1405      << setw(8) << "Frame" << setw(16)
[1694]1406      << "RefVal" << setw(10) << "RefPix" << setw(12) << "Increment"
1407      << setw(7) << "Channels"
1408      << endl;
[805]1409  oss << asap::SEPERATOR << endl;
[2286]1410
1411  // Flush summary and clear up the string
1412  ols << String(oss) << LogIO::POST;
1413  if (ofs) ofs << String(oss) << flush;
1414  oss.str("");
1415  oss.clear();
1416
[805]1417  TableIterator iter(table_, "SCANNO");
1418  while (!iter.pastEnd()) {
1419    Table subt = iter.table();
1420    ROTableRow row(subt);
1421    MEpoch::ROScalarColumn timeCol(subt,"TIME");
1422    const TableRecord& rec = row.get(0);
1423    oss << setw(4) << std::right << rec.asuInt("SCANNO")
1424        << std::left << setw(1) << ""
1425        << setw(15) << rec.asString("SRCNAME")
1426        << setw(10) << formatTime(timeCol(0), false);
1427    // count the cycles in the scan
1428    TableIterator cyciter(subt, "CYCLENO");
1429    int nint = 0;
1430    while (!cyciter.pastEnd()) {
1431      ++nint;
1432      ++cyciter;
1433    }
1434    oss << setw(3) << std::right << nint  << setw(3) << " x " << std::left
[2005]1435        << setw(11) <<  formatSec(rec.asFloat("INTERVAL")) << setw(1) << ""
1436        << setw(15) << SrcType::getName(rec.asInt("SRCTYPE")) << endl;
[447]1437
[805]1438    TableIterator biter(subt, "BEAMNO");
1439    while (!biter.pastEnd()) {
1440      Table bsubt = biter.table();
1441      ROTableRow brow(bsubt);
1442      const TableRecord& brec = brow.get(0);
[1000]1443      uInt row0 = bsubt.rowNumbers(table_)[0];
[941]1444      oss << setw(5) << "" <<  setw(4) << std::right << brec.asuInt("BEAMNO")<< std::left;
[987]1445      oss  << setw(4) << ""  << formatDirection(getDirection(row0)) << endl;
[805]1446      TableIterator iiter(bsubt, "IFNO");
1447      while (!iiter.pastEnd()) {
1448        Table isubt = iiter.table();
1449        ROTableRow irow(isubt);
1450        const TableRecord& irec = irow.get(0);
[1694]1451        oss << setw(9) << "";
[941]1452        oss << setw(3) << std::right << irec.asuInt("IFNO") << std::left
[1694]1453            << setw(1) << "" << frequencies().print(irec.asuInt("FREQ_ID"))
1454            << setw(3) << "" << nchan(irec.asuInt("IFNO"))
[1375]1455            << endl;
[447]1456
[805]1457        ++iiter;
1458      }
1459      ++biter;
1460    }
[2286]1461    // Flush summary every scan and clear up the string
1462    ols << String(oss) << LogIO::POST;
1463    if (ofs) ofs << String(oss) << flush;
1464    oss.str("");
1465    oss.clear();
1466
[805]1467    ++iter;
[447]1468  }
[2286]1469  oss << asap::SEPERATOR << endl;
1470  ols << String(oss) << LogIO::POST;
1471  if (ofs) {
[2290]1472    ofs << String(oss) << flush;
[2286]1473    ofs.close();
1474  }
1475  //  return String(oss);
[447]1476}
1477
[1947]1478// std::string Scantable::getTime(int whichrow, bool showdate) const
1479// {
1480//   MEpoch::ROScalarColumn timeCol(table_, "TIME");
1481//   MEpoch me;
1482//   if (whichrow > -1) {
1483//     me = timeCol(uInt(whichrow));
1484//   } else {
1485//     Double tm;
1486//     table_.keywordSet().get("UTC",tm);
1487//     me = MEpoch(MVEpoch(tm));
1488//   }
1489//   return formatTime(me, showdate);
1490// }
1491
1492std::string Scantable::getTime(int whichrow, bool showdate, uInt prec) const
[777]1493{
[805]1494  MEpoch me;
[1947]1495  me = getEpoch(whichrow);
1496  return formatTime(me, showdate, prec);
[777]1497}
[805]1498
[1411]1499MEpoch Scantable::getEpoch(int whichrow) const
1500{
1501  if (whichrow > -1) {
1502    return timeCol_(uInt(whichrow));
1503  } else {
1504    Double tm;
1505    table_.keywordSet().get("UTC",tm);
[1598]1506    return MEpoch(MVEpoch(tm));
[1411]1507  }
1508}
1509
[1068]1510std::string Scantable::getDirectionString(int whichrow) const
1511{
1512  return formatDirection(getDirection(uInt(whichrow)));
1513}
1514
[1598]1515
1516SpectralCoordinate Scantable::getSpectralCoordinate(int whichrow) const {
1517  const MPosition& mp = getAntennaPosition();
1518  const MDirection& md = getDirection(whichrow);
1519  const MEpoch& me = timeCol_(whichrow);
[1819]1520  //Double rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
1521  Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
[2346]1522  return freqTable_.getSpectralCoordinate(md, mp, me, rf,
[1598]1523                                          mfreqidCol_(whichrow));
1524}
1525
[1360]1526std::vector< double > Scantable::getAbcissa( int whichrow ) const
[865]1527{
[1507]1528  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal row number"));
[865]1529  std::vector<double> stlout;
1530  int nchan = specCol_(whichrow).nelements();
[2346]1531  String us = freqTable_.getUnitString();
[865]1532  if ( us == "" || us == "pixel" || us == "channel" ) {
1533    for (int i=0; i<nchan; ++i) {
1534      stlout.push_back(double(i));
1535    }
1536    return stlout;
1537  }
[1598]1538  SpectralCoordinate spc = getSpectralCoordinate(whichrow);
[865]1539  Vector<Double> pixel(nchan);
1540  Vector<Double> world;
1541  indgen(pixel);
1542  if ( Unit(us) == Unit("Hz") ) {
1543    for ( int i=0; i < nchan; ++i) {
1544      Double world;
1545      spc.toWorld(world, pixel[i]);
1546      stlout.push_back(double(world));
1547    }
1548  } else if ( Unit(us) == Unit("km/s") ) {
1549    Vector<Double> world;
1550    spc.pixelToVelocity(world, pixel);
1551    world.tovector(stlout);
1552  }
1553  return stlout;
1554}
[1360]1555void Scantable::setDirectionRefString( const std::string & refstr )
[987]1556{
1557  MDirection::Types mdt;
1558  if (refstr != "" && !MDirection::getType(mdt, refstr)) {
1559    throw(AipsError("Illegal Direction frame."));
1560  }
1561  if ( refstr == "" ) {
1562    String defaultstr = MDirection::showType(dirCol_.getMeasRef().getType());
1563    table_.rwKeywordSet().define("DIRECTIONREF", defaultstr);
1564  } else {
1565    table_.rwKeywordSet().define("DIRECTIONREF", String(refstr));
1566  }
1567}
[865]1568
[1360]1569std::string Scantable::getDirectionRefString( ) const
[987]1570{
1571  return table_.keywordSet().asString("DIRECTIONREF");
1572}
1573
1574MDirection Scantable::getDirection(int whichrow ) const
1575{
1576  String usertype = table_.keywordSet().asString("DIRECTIONREF");
1577  String type = MDirection::showType(dirCol_.getMeasRef().getType());
1578  if ( usertype != type ) {
1579    MDirection::Types mdt;
1580    if (!MDirection::getType(mdt, usertype)) {
1581      throw(AipsError("Illegal Direction frame."));
1582    }
1583    return dirCol_.convert(uInt(whichrow), mdt);
1584  } else {
1585    return dirCol_(uInt(whichrow));
1586  }
1587}
1588
[847]1589std::string Scantable::getAbcissaLabel( int whichrow ) const
1590{
[996]1591  if ( whichrow > int(table_.nrow()) ) throw(AipsError("Illegal ro number"));
[847]1592  const MPosition& mp = getAntennaPosition();
[987]1593  const MDirection& md = getDirection(whichrow);
[847]1594  const MEpoch& me = timeCol_(whichrow);
[1819]1595  //const Double& rf = mmolidCol_(whichrow);
1596  const Vector<Double> rf = moleculeTable_.getRestFrequency(mmolidCol_(whichrow));
[847]1597  SpectralCoordinate spc =
[2346]1598    freqTable_.getSpectralCoordinate(md, mp, me, rf, mfreqidCol_(whichrow));
[847]1599
1600  String s = "Channel";
[2346]1601  Unit u = Unit(freqTable_.getUnitString());
[847]1602  if (u == Unit("km/s")) {
[1170]1603    s = CoordinateUtil::axisLabel(spc, 0, True,True,  True);
[847]1604  } else if (u == Unit("Hz")) {
1605    Vector<String> wau(1);wau = u.getName();
1606    spc.setWorldAxisUnits(wau);
[1170]1607    s = CoordinateUtil::axisLabel(spc, 0, True, True, False);
[847]1608  }
1609  return s;
1610
1611}
1612
[1819]1613/**
1614void asap::Scantable::setRestFrequencies( double rf, const std::string& name,
[1170]1615                                          const std::string& unit )
[1819]1616**/
1617void Scantable::setRestFrequencies( vector<double> rf, const vector<std::string>& name,
1618                                          const std::string& unit )
1619
[847]1620{
[923]1621  ///@todo lookup in line table to fill in name and formattedname
[847]1622  Unit u(unit);
[1819]1623  //Quantum<Double> urf(rf, u);
1624  Quantum<Vector<Double> >urf(rf, u);
1625  Vector<String> formattedname(0);
1626  //cerr<<"Scantable::setRestFrequnecies="<<urf<<endl;
1627
1628  //uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), name, "");
1629  uInt id = moleculeTable_.addEntry(urf.getValue("Hz"), mathutil::toVectorString(name), formattedname);
[847]1630  TableVector<uInt> tabvec(table_, "MOLECULE_ID");
1631  tabvec = id;
1632}
1633
[1819]1634/**
1635void asap::Scantable::setRestFrequencies( const std::string& name )
[847]1636{
1637  throw(AipsError("setRestFrequencies( const std::string& name ) NYI"));
1638  ///@todo implement
1639}
[1819]1640**/
[2012]1641
[1819]1642void Scantable::setRestFrequencies( const vector<std::string>& name )
1643{
[2163]1644  (void) name; // suppress unused warning
[1819]1645  throw(AipsError("setRestFrequencies( const vector<std::string>& name ) NYI"));
1646  ///@todo implement
1647}
[847]1648
[1360]1649std::vector< unsigned int > Scantable::rownumbers( ) const
[852]1650{
1651  std::vector<unsigned int> stlout;
1652  Vector<uInt> vec = table_.rowNumbers();
1653  vec.tovector(stlout);
1654  return stlout;
1655}
1656
[865]1657
[1360]1658Matrix<Float> Scantable::getPolMatrix( uInt whichrow ) const
[896]1659{
1660  ROTableRow row(table_);
1661  const TableRecord& rec = row.get(whichrow);
1662  Table t =
1663    originalTable_( originalTable_.col("SCANNO") == Int(rec.asuInt("SCANNO"))
1664                    && originalTable_.col("BEAMNO") == Int(rec.asuInt("BEAMNO"))
1665                    && originalTable_.col("IFNO") == Int(rec.asuInt("IFNO"))
1666                    && originalTable_.col("CYCLENO") == Int(rec.asuInt("CYCLENO")) );
1667  ROArrayColumn<Float> speccol(t, "SPECTRA");
1668  return speccol.getColumn();
1669}
[865]1670
[1360]1671std::vector< std::string > Scantable::columnNames( ) const
[902]1672{
1673  Vector<String> vec = table_.tableDesc().columnNames();
1674  return mathutil::tovectorstring(vec);
1675}
[896]1676
[1360]1677MEpoch::Types Scantable::getTimeReference( ) const
[915]1678{
1679  return MEpoch::castType(timeCol_.getMeasRef().getType());
[972]1680}
[915]1681
[1360]1682void Scantable::addFit( const STFitEntry& fit, int row )
[972]1683{
[1819]1684  //cout << mfitidCol_(uInt(row)) << endl;
1685  LogIO os( LogOrigin( "Scantable", "addFit()", WHERE ) ) ;
1686  os << mfitidCol_(uInt(row)) << LogIO::POST ;
[972]1687  uInt id = fitTable_.addEntry(fit, mfitidCol_(uInt(row)));
1688  mfitidCol_.put(uInt(row), id);
1689}
[915]1690
[1360]1691void Scantable::shift(int npix)
1692{
1693  Vector<uInt> fids(mfreqidCol_.getColumn());
1694  genSort( fids, Sort::Ascending,
1695           Sort::QuickSort|Sort::NoDuplicates );
1696  for (uInt i=0; i<fids.nelements(); ++i) {
[1567]1697    frequencies().shiftRefPix(npix, fids[i]);
[1360]1698  }
1699}
[987]1700
[1819]1701String Scantable::getAntennaName() const
[1391]1702{
1703  String out;
1704  table_.keywordSet().get("AntennaName", out);
[1987]1705  String::size_type pos1 = out.find("@") ;
1706  String::size_type pos2 = out.find("//") ;
1707  if ( pos2 != String::npos )
[2036]1708    out = out.substr(pos2+2,pos1-pos2-2) ;
[1987]1709  else if ( pos1 != String::npos )
1710    out = out.substr(0,pos1) ;
[1391]1711  return out;
[987]1712}
[1391]1713
[1730]1714int Scantable::checkScanInfo(const std::vector<int>& scanlist) const
[1391]1715{
1716  String tbpath;
1717  int ret = 0;
1718  if ( table_.keywordSet().isDefined("GBT_GO") ) {
1719    table_.keywordSet().get("GBT_GO", tbpath);
1720    Table t(tbpath,Table::Old);
1721    // check each scan if other scan of the pair exist
1722    int nscan = scanlist.size();
1723    for (int i = 0; i < nscan; i++) {
1724      Table subt = t( t.col("SCAN") == scanlist[i]+1 );
1725      if (subt.nrow()==0) {
[1819]1726        //cerr <<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<endl;
1727        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1728        os <<LogIO::WARN<<"Scan "<<scanlist[i]<<" cannot be found in the scantable."<<LogIO::POST;
[1391]1729        ret = 1;
1730        break;
1731      }
1732      ROTableRow row(subt);
1733      const TableRecord& rec = row.get(0);
1734      int scan1seqn = rec.asuInt("PROCSEQN");
1735      int laston1 = rec.asuInt("LASTON");
1736      if ( rec.asuInt("PROCSIZE")==2 ) {
1737        if ( i < nscan-1 ) {
1738          Table subt2 = t( t.col("SCAN") == scanlist[i+1]+1 );
1739          if ( subt2.nrow() == 0) {
[1819]1740            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1741
1742            //cerr<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<endl;
1743            os<<LogIO::WARN<<"Scan "<<scanlist[i+1]<<" cannot be found in the scantable."<<LogIO::POST;
[1391]1744            ret = 1;
1745            break;
1746          }
1747          ROTableRow row2(subt2);
1748          const TableRecord& rec2 = row2.get(0);
1749          int scan2seqn = rec2.asuInt("PROCSEQN");
1750          int laston2 = rec2.asuInt("LASTON");
1751          if (scan1seqn == 1 && scan2seqn == 2) {
1752            if (laston1 == laston2) {
[1819]1753              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1754              //cerr<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1755              os<<"A valid scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
[1391]1756              i +=1;
1757            }
1758            else {
[1819]1759              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1760              //cerr<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<endl;
1761              os<<LogIO::WARN<<"Incorrect scan pair ["<<scanlist[i]<<","<<scanlist[i+1]<<"]"<<LogIO::POST;
[1391]1762            }
1763          }
1764          else if (scan1seqn==2 && scan2seqn == 1) {
1765            if (laston1 == laston2) {
[1819]1766              LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1767              //cerr<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<endl;
1768              os<<LogIO::WARN<<"["<<scanlist[i]<<","<<scanlist[i+1]<<"] is a valid scan pair but in incorrect order."<<LogIO::POST;
[1391]1769              ret = 1;
1770              break;
1771            }
1772          }
1773          else {
[1819]1774            LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1775            //cerr<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<endl;
1776            os<<LogIO::WARN<<"The other scan for  "<<scanlist[i]<<" appears to be missing. Check the input scan numbers."<<LogIO::POST;
[1391]1777            ret = 1;
1778            break;
1779          }
1780        }
1781      }
1782      else {
[1819]1783        LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1784        //cerr<<"The scan does not appear to be standard obsevation."<<endl;
1785        os<<LogIO::WARN<<"The scan does not appear to be standard obsevation."<<LogIO::POST;
[1391]1786      }
1787    //if ( i >= nscan ) break;
1788    }
1789  }
1790  else {
[1819]1791    LogIO os( LogOrigin( "Scantable", "checkScanInfo()", WHERE ) ) ;
1792    //cerr<<"No reference to GBT_GO table."<<endl;
1793    os<<LogIO::WARN<<"No reference to GBT_GO table."<<LogIO::POST;
[1391]1794    ret = 1;
1795  }
1796  return ret;
1797}
1798
[1730]1799std::vector<double> Scantable::getDirectionVector(int whichrow) const
[1391]1800{
1801  Vector<Double> Dir = dirCol_(whichrow).getAngle("rad").getValue();
1802  std::vector<double> dir;
1803  Dir.tovector(dir);
1804  return dir;
1805}
1806
[1819]1807void asap::Scantable::reshapeSpectrum( int nmin, int nmax )
1808  throw( casa::AipsError )
1809{
1810  // assumed that all rows have same nChan
1811  Vector<Float> arr = specCol_( 0 ) ;
1812  int nChan = arr.nelements() ;
1813
1814  // if nmin < 0 or nmax < 0, nothing to do
1815  if (  nmin < 0 ) {
1816    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1817    }
1818  if (  nmax < 0  ) {
1819    throw( casa::indexError<int>( nmax, "asap::Scantable::reshapeSpectrum: Invalid range. Negative index is specified." ) ) ;
1820  }
1821
1822  // if nmin > nmax, exchange values
1823  if ( nmin > nmax ) {
1824    int tmp = nmax ;
1825    nmax = nmin ;
1826    nmin = tmp ;
1827    LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1828    os << "Swap values. Applied range is ["
1829       << nmin << ", " << nmax << "]" << LogIO::POST ;
1830  }
1831
1832  // if nmin exceeds nChan, nothing to do
1833  if ( nmin >= nChan ) {
1834    throw( casa::indexError<int>( nmin, "asap::Scantable::reshapeSpectrum: Invalid range. Specified minimum exceeds nChan." ) ) ;
1835  }
1836
1837  // if nmax exceeds nChan, reset nmax to nChan
[2672]1838  if ( nmax >= nChan-1 ) {
[1819]1839    if ( nmin == 0 ) {
1840      // nothing to do
1841      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1842      os << "Whole range is selected. Nothing to do." << LogIO::POST ;
1843      return ;
1844    }
1845    else {
1846      LogIO os( LogOrigin( "Scantable", "reshapeSpectrum()", WHERE ) ) ;
1847      os << "Specified maximum exceeds nChan. Applied range is ["
1848         << nmin << ", " << nChan-1 << "]." << LogIO::POST ;
1849      nmax = nChan - 1 ;
1850    }
1851  }
1852
1853  // reshape specCol_ and flagCol_
1854  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1855    reshapeSpectrum( nmin, nmax, irow ) ;
1856  }
1857
1858  // update FREQUENCIES subtable
1859  Double refpix ;
1860  Double refval ;
1861  Double increment ;
[2346]1862  int freqnrow = freqTable_.table().nrow() ;
[1819]1863  Vector<uInt> oldId( freqnrow ) ;
1864  Vector<uInt> newId( freqnrow ) ;
1865  for ( int irow = 0 ; irow < freqnrow ; irow++ ) {
[2346]1866    freqTable_.getEntry( refpix, refval, increment, irow ) ;
[1819]1867    /***
1868     * need to shift refpix to nmin
1869     * note that channel nmin in old index will be channel 0 in new one
1870     ***/
1871    refval = refval - ( refpix - nmin ) * increment ;
1872    refpix = 0 ;
[2346]1873    freqTable_.setEntry( refpix, refval, increment, irow ) ;
[1819]1874  }
1875
1876  // update nchan
1877  int newsize = nmax - nmin + 1 ;
1878  table_.rwKeywordSet().define( "nChan", newsize ) ;
1879
1880  // update bandwidth
1881  // assumed all spectra in the scantable have same bandwidth
1882  table_.rwKeywordSet().define( "Bandwidth", increment * newsize ) ;
1883
1884  return ;
1885}
1886
1887void asap::Scantable::reshapeSpectrum( int nmin, int nmax, int irow )
1888{
1889  // reshape specCol_ and flagCol_
1890  Vector<Float> oldspec = specCol_( irow ) ;
1891  Vector<uChar> oldflag = flagsCol_( irow ) ;
[2475]1892  Vector<Float> oldtsys = tsysCol_( irow ) ;
[1819]1893  uInt newsize = nmax - nmin + 1 ;
[2475]1894  Slice slice( nmin, newsize, 1 ) ;
1895  specCol_.put( irow, oldspec( slice ) ) ;
1896  flagsCol_.put( irow, oldflag( slice ) ) ;
1897  if ( oldspec.size() == oldtsys.size() )
1898    tsysCol_.put( irow, oldtsys( slice ) ) ;
[1819]1899
1900  return ;
1901}
1902
[2435]1903void asap::Scantable::regridSpecChannel( double dnu, int nChan )
1904{
1905  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1906  os << "Regrid abcissa with spectral resoultion " << dnu << " " << freqTable_.getUnitString() << " with channel number " << ((nChan>0)? String(nChan) : "covering band width")<< LogIO::POST ;
1907  int freqnrow = freqTable_.table().nrow() ;
1908  Vector<bool> firstTime( freqnrow, true ) ;
1909  double oldincr, factor;
1910  uInt currId;
1911  Double refpix ;
1912  Double refval ;
1913  Double increment ;
1914  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1915    currId = mfreqidCol_(irow);
1916    vector<double> abcissa = getAbcissa( irow ) ;
1917    if (nChan < 0) {
1918      int oldsize = abcissa.size() ;
1919      double bw = (abcissa[oldsize-1]-abcissa[0]) +                     \
1920        0.5 * (abcissa[1]-abcissa[0] + abcissa[oldsize-1]-abcissa[oldsize-2]) ;
1921      nChan = int( ceil( abs(bw/dnu) ) ) ;
1922    }
1923    // actual regridding
1924    regridChannel( nChan, dnu, irow ) ;
[2433]1925
[2435]1926    // update FREQUENCIES subtable
1927    if (firstTime[currId]) {
1928      oldincr = abcissa[1]-abcissa[0] ;
1929      factor = dnu/oldincr ;
1930      firstTime[currId] = false ;
1931      freqTable_.getEntry( refpix, refval, increment, currId ) ;
[2463]1932
[2437]1933      //refval = refval - ( refpix + 0.5 * (1 - factor) ) * increment ;
[2463]1934      if (factor > 0 ) {
[2462]1935        refpix = (refpix + 0.5)/factor - 0.5;
1936      } else {
[2463]1937        refpix = (abcissa.size() - 0.5 - refpix)/abs(factor) - 0.5;
[2462]1938      }
[2435]1939      freqTable_.setEntry( refpix, refval, increment*factor, currId ) ;
[2463]1940      //os << "ID" << currId << ": channel width (Orig) = " << oldincr << " [" << freqTable_.getUnitString() << "], scale factor = " << factor << LogIO::POST ;
1941      //os << "     frequency increment (Orig) = " << increment << "-> (New) " << increment*factor << LogIO::POST ;
[2435]1942    }
1943  }
1944}
1945
[1819]1946void asap::Scantable::regridChannel( int nChan, double dnu )
1947{
1948  LogIO os( LogOrigin( "Scantable", "regridChannel()", WHERE ) ) ;
1949  os << "Regrid abcissa with channel number " << nChan << " and spectral resoultion " << dnu << "Hz." << LogIO::POST ;
1950  // assumed that all rows have same nChan
1951  Vector<Float> arr = specCol_( 0 ) ;
1952  int oldsize = arr.nelements() ;
1953
1954  // if oldsize == nChan, nothing to do
1955  if ( oldsize == nChan ) {
1956    os << "Specified channel number is same as current one. Nothing to do." << LogIO::POST ;
1957    return ;
1958  }
1959
1960  // if oldChan < nChan, unphysical operation
1961  if ( oldsize < nChan ) {
1962    os << "Unphysical operation. Nothing to do." << LogIO::POST ;
1963    return ;
1964  }
1965
[2433]1966  // change channel number for specCol_, flagCol_, and tsysCol_ (if necessary)
[1819]1967  vector<string> coordinfo = getCoordInfo() ;
1968  string oldinfo = coordinfo[0] ;
1969  coordinfo[0] = "Hz" ;
1970  setCoordInfo( coordinfo ) ;
1971  for ( int irow = 0 ; irow < nrow() ; irow++ ) {
1972    regridChannel( nChan, dnu, irow ) ;
1973  }
1974  coordinfo[0] = oldinfo ;
1975  setCoordInfo( coordinfo ) ;
1976
1977
1978  // NOTE: this method does not update metadata such as
1979  //       FREQUENCIES subtable, nChan, Bandwidth, etc.
1980
1981  return ;
1982}
1983
1984void asap::Scantable::regridChannel( int nChan, double dnu, int irow )
1985{
1986  // logging
1987  //ofstream ofs( "average.log", std::ios::out | std::ios::app ) ;
1988  //ofs << "IFNO = " << getIF( irow ) << " irow = " << irow << endl ;
1989
1990  Vector<Float> oldspec = specCol_( irow ) ;
1991  Vector<uChar> oldflag = flagsCol_( irow ) ;
[2431]1992  Vector<Float> oldtsys = tsysCol_( irow ) ;
[1819]1993  Vector<Float> newspec( nChan, 0 ) ;
[2431]1994  Vector<uChar> newflag( nChan, true ) ;
1995  Vector<Float> newtsys ;
1996  bool regridTsys = false ;
1997  if (oldtsys.size() == oldspec.size()) {
1998    regridTsys = true ;
1999    newtsys.resize(nChan,false) ;
2000    newtsys = 0 ;
2001  }
[1819]2002
2003  // regrid
2004  vector<double> abcissa = getAbcissa( irow ) ;
2005  int oldsize = abcissa.size() ;
2006  double olddnu = abcissa[1] - abcissa[0] ;
[2462]2007  //int ichan = 0 ;
[1819]2008  double wsum = 0.0 ;
[2433]2009  Vector<double> zi( nChan+1 ) ;
2010  Vector<double> yi( oldsize + 1 ) ;
[1819]2011  yi[0] = abcissa[0] - 0.5 * olddnu ;
[2431]2012  for ( int ii = 1 ; ii < oldsize ; ii++ )
[2433]2013    yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2014  yi[oldsize] = abcissa[oldsize-1] \
2015    + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
[2462]2016  //zi[0] = abcissa[0] - 0.5 * olddnu ;
2017  zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2018  for ( int ii = 1 ; ii < nChan ; ii++ )
2019    zi[ii] = zi[0] + dnu * ii ;
2020  zi[nChan] = zi[nChan-1] + dnu ;
2021  // Access zi and yi in ascending order
2022  int izs = ((dnu > 0) ? 0 : nChan ) ;
2023  int ize = ((dnu > 0) ? nChan : 0 ) ;
2024  int izincr = ((dnu > 0) ? 1 : -1 ) ;
2025  int ichan =  ((olddnu > 0) ? 0 : oldsize ) ;
2026  int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2027  int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2028  //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2029  int ii = izs ;
2030  while (ii != ize) {
2031    // always zl < zr
2032    double zl = zi[ii] ;
2033    double zr = zi[ii+izincr] ;
2034    // Need to access smaller index for the new spec, flag, and tsys.
2035    // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2036    int i = min(ii, ii+izincr) ;
2037    //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2038    int jj = ichan ;
2039    while (jj != iye) {
2040      // always yl < yr
2041      double yl = yi[jj] ;
2042      double yr = yi[jj+iyincr] ;
2043      // Need to access smaller index for the original spec, flag, and tsys.
2044      // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2045      int j = min(jj, jj+iyincr) ;
2046      if ( yr <= zl ) {
2047        jj += iyincr ;
2048        continue ;
[1819]2049      }
[2462]2050      else if ( yl <= zl ) {
2051        if ( yr < zr ) {
2052          if (!oldflag[j]) {
2053            newspec[i] += oldspec[j] * ( yr - zl ) ;
2054            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2055            wsum += ( yr - zl ) ;
2056          }
2057          newflag[i] = newflag[i] && oldflag[j] ;
2058        }
2059        else {
2060          if (!oldflag[j]) {
2061            newspec[i] += oldspec[j] * abs(dnu) ;
2062            if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2063            wsum += abs(dnu) ;
2064          }
2065          newflag[i] = newflag[i] && oldflag[j] ;
2066          ichan = jj ;
2067          break ;
2068        }
[2431]2069      }
[2462]2070      else if ( yl < zr ) {
2071        if ( yr <= zr ) {
2072          if (!oldflag[j]) {
2073            newspec[i] += oldspec[j] * ( yr - yl ) ;
2074            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2075            wsum += ( yr - yl ) ;
2076          }
2077          newflag[i] = newflag[i] && oldflag[j] ;
2078        }
2079        else {
2080          if (!oldflag[j]) {
2081            newspec[i] += oldspec[j] * ( zr - yl ) ;
2082            if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2083            wsum += ( zr - yl ) ;
2084          }
2085          newflag[i] = newflag[i] && oldflag[j] ;
2086          ichan = jj ;
2087          break ;
2088        }
[1819]2089      }
[2462]2090      else {
2091        ichan = jj - iyincr ;
2092        break ;
[2431]2093      }
[2462]2094      jj += iyincr ;
[1819]2095    }
[2462]2096    if ( wsum != 0.0 ) {
2097      newspec[i] /= wsum ;
2098      if (regridTsys) newtsys[i] /= wsum ;
2099    }
2100    wsum = 0.0 ;
2101    ii += izincr ;
[1819]2102  }
[2462]2103//   if ( dnu > 0.0 ) {
2104//     for ( int ii = 0 ; ii < nChan ; ii++ ) {
2105//       double zl = zi[ii] ;
2106//       double zr = zi[ii+1] ;
2107//       for ( int j = ichan ; j < oldsize ; j++ ) {
2108//         double yl = yi[j] ;
2109//         double yr = yi[j+1] ;
2110//         if ( yl <= zl ) {
2111//           if ( yr <= zl ) {
2112//             continue ;
2113//           }
2114//           else if ( yr <= zr ) {
2115//          if (!oldflag[j]) {
2116//            newspec[ii] += oldspec[j] * ( yr - zl ) ;
2117//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - zl ) ;
2118//            wsum += ( yr - zl ) ;
2119//          }
2120//          newflag[ii] = newflag[ii] && oldflag[j] ;
2121//           }
2122//           else {
2123//          if (!oldflag[j]) {
2124//            newspec[ii] += oldspec[j] * dnu ;
2125//            if (regridTsys) newtsys[ii] += oldtsys[j] * dnu ;
2126//            wsum += dnu ;
2127//          }
2128//          newflag[ii] = newflag[ii] && oldflag[j] ;
2129//             ichan = j ;
2130//             break ;
2131//           }
2132//         }
2133//         else if ( yl < zr ) {
2134//           if ( yr <= zr ) {
2135//          if (!oldflag[j]) {
2136//            newspec[ii] += oldspec[j] * ( yr - yl ) ;
2137//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( yr - yl ) ;
2138//               wsum += ( yr - yl ) ;
2139//          }
2140//          newflag[ii] = newflag[ii] && oldflag[j] ;
2141//           }
2142//           else {
2143//          if (!oldflag[j]) {
2144//            newspec[ii] += oldspec[j] * ( zr - yl ) ;
2145//            if (regridTsys) newtsys[ii] += oldtsys[j] * ( zr - yl ) ;
2146//            wsum += ( zr - yl ) ;
2147//          }
2148//          newflag[ii] = newflag[ii] && oldflag[j] ;
2149//             ichan = j ;
2150//             break ;
2151//           }
2152//         }
2153//         else {
2154//           ichan = j - 1 ;
2155//           break ;
2156//         }
2157//       }
2158//       if ( wsum != 0.0 ) {
2159//         newspec[ii] /= wsum ;
2160//      if (regridTsys) newtsys[ii] /= wsum ;
2161//       }
2162//       wsum = 0.0 ;
2163//     }
[1819]2164//   }
[2462]2165//   else if ( dnu < 0.0 ) {
2166//     for ( int ii = 0 ; ii < nChan ; ii++ ) {
2167//       double zl = zi[ii] ;
2168//       double zr = zi[ii+1] ;
2169//       for ( int j = ichan ; j < oldsize ; j++ ) {
2170//         double yl = yi[j] ;
2171//         double yr = yi[j+1] ;
2172//         if ( yl >= zl ) {
2173//           if ( yr >= zl ) {
2174//             continue ;
2175//           }
2176//           else if ( yr >= zr ) {
2177//          if (!oldflag[j]) {
2178//            newspec[ii] += oldspec[j] * abs( yr - zl ) ;
2179//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - zl ) ;
2180//            wsum += abs( yr - zl ) ;
2181//          }
2182//          newflag[ii] = newflag[ii] && oldflag[j] ;
2183//           }
2184//           else {
2185//          if (!oldflag[j]) {
2186//            newspec[ii] += oldspec[j] * abs( dnu ) ;
2187//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( dnu ) ;
2188//            wsum += abs( dnu ) ;
2189//          }
2190//          newflag[ii] = newflag[ii] && oldflag[j] ;
2191//             ichan = j ;
2192//             break ;
2193//           }
2194//         }
2195//         else if ( yl > zr ) {
2196//           if ( yr >= zr ) {
2197//          if (!oldflag[j]) {
2198//            newspec[ii] += oldspec[j] * abs( yr - yl ) ;
2199//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( yr - yl ) ;
2200//            wsum += abs( yr - yl ) ;
2201//          }
2202//          newflag[ii] = newflag[ii] && oldflag[j] ;
2203//           }
2204//           else {
2205//          if (!oldflag[j]) {
2206//            newspec[ii] += oldspec[j] * abs( zr - yl ) ;
2207//            if (regridTsys) newtsys[ii] += oldtsys[j] * abs( zr - yl ) ;
2208//            wsum += abs( zr - yl ) ;
2209//          }
2210//          newflag[ii] = newflag[ii] && oldflag[j] ;
2211//             ichan = j ;
2212//             break ;
2213//           }
2214//         }
2215//         else {
2216//           ichan = j - 1 ;
2217//           break ;
2218//         }
2219//       }
2220//       if ( wsum != 0.0 ) {
2221//         newspec[ii] /= wsum ;
2222//      if (regridTsys) newtsys[ii] /= wsum ;
2223//       }
2224//       wsum = 0.0 ;
[1819]2225//     }
2226//   }
[2462]2227// //   //ofs << "olddnu = " << olddnu << ", dnu = " << dnu << endl ;
2228// //   pile += dnu ;
2229// //   wedge = olddnu * ( refChan + 1 ) ;
2230// //   while ( wedge < pile ) {
2231// //     newspec[0] += olddnu * oldspec[refChan] ;
2232// //     newflag[0] = newflag[0] || oldflag[refChan] ;
2233// //     //ofs << "channel " << refChan << " is included in new channel 0" << endl ;
2234// //     refChan++ ;
2235// //     wedge += olddnu ;
2236// //     wsum += olddnu ;
2237// //     //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2238// //   }
2239// //   frac = ( wedge - pile ) / olddnu ;
2240// //   wsum += ( 1.0 - frac ) * olddnu ;
2241// //   newspec[0] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2242// //   newflag[0] = newflag[0] || oldflag[refChan] ;
2243// //   //ofs << "channel " << refChan << " is partly included in new channel 0" << " with fraction of " << ( 1.0 - frac ) << endl ;
2244// //   //ofs << "newspec[0] = " << newspec[0] << " wsum = " << wsum << endl ;
2245// //   newspec[0] /= wsum ;
2246// //   //ofs << "newspec[0] = " << newspec[0] << endl ;
2247// //   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
[1819]2248
[2462]2249// //   /***
2250// //    * ichan = 1 - nChan-2
2251// //    ***/
2252// //   for ( int ichan = 1 ; ichan < nChan - 1 ; ichan++ ) {
2253// //     pile += dnu ;
2254// //     newspec[ichan] += frac * olddnu * oldspec[refChan] ;
2255// //     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2256// //     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << frac << endl ;
2257// //     refChan++ ;
2258// //     wedge += olddnu ;
2259// //     wsum = frac * olddnu ;
2260// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2261// //     while ( wedge < pile ) {
2262// //       newspec[ichan] += olddnu * oldspec[refChan] ;
2263// //       newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2264// //       //ofs << "channel " << refChan << " is included in new channel " << ichan << endl ;
2265// //       refChan++ ;
2266// //       wedge += olddnu ;
2267// //       wsum += olddnu ;
2268// //       //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2269// //     }
2270// //     frac = ( wedge - pile ) / olddnu ;
2271// //     wsum += ( 1.0 - frac ) * olddnu ;
2272// //     newspec[ichan] += ( 1.0 - frac ) * olddnu * oldspec[refChan] ;
2273// //     newflag[ichan] = newflag[ichan] || oldflag[refChan] ;
2274// //     //ofs << "channel " << refChan << " is partly included in new channel " << ichan << " with fraction of " << ( 1.0 - frac ) << endl ;
2275// //     //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2276// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << " wsum = " << wsum << endl ;
2277// //     newspec[ichan] /= wsum ;
2278// //     //ofs << "newspec[" << ichan << "] = " << newspec[ichan] << endl ;
2279// //   }
[1819]2280
[2462]2281// //   /***
2282// //    * ichan = nChan-1
2283// //    ***/
2284// //   // NOTE: Assumed that all spectra have the same bandwidth
2285// //   pile += dnu ;
2286// //   newspec[nChan-1] += frac * olddnu * oldspec[refChan] ;
2287// //   newflag[nChan-1] = newflag[nChan-1] || oldflag[refChan] ;
2288// //   //ofs << "channel " << refChan << " is partly included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2289// //   refChan++ ;
2290// //   wedge += olddnu ;
2291// //   wsum = frac * olddnu ;
2292// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2293// //   for ( int jchan = refChan ; jchan < oldsize ; jchan++ ) {
2294// //     newspec[nChan-1] += olddnu * oldspec[jchan] ;
2295// //     newflag[nChan-1] = newflag[nChan-1] || oldflag[jchan] ;
2296// //     wsum += olddnu ;
2297// //     //ofs << "channel " << jchan << " is included in new channel " << nChan-1 << " with fraction of " << frac << endl ;
2298// //     //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2299// //   }
2300// //   //ofs << "wedge = " << wedge << ", pile = " << pile << endl ;
2301// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << " wsum = " << wsum << endl ;
2302// //   newspec[nChan-1] /= wsum ;
2303// //   //ofs << "newspec[" << nChan - 1 << "] = " << newspec[nChan-1] << endl ;
[1819]2304
[2462]2305// //   // ofs.close() ;
2306
[2032]2307  specCol_.put( irow, newspec ) ;
2308  flagsCol_.put( irow, newflag ) ;
[2431]2309  if (regridTsys) tsysCol_.put( irow, newtsys );
[1819]2310
2311  return ;
2312}
2313
[2595]2314void Scantable::regridChannel( int nChan, double dnu, double fmin, int irow )
2315{
2316  Vector<Float> oldspec = specCol_( irow ) ;
2317  Vector<uChar> oldflag = flagsCol_( irow ) ;
2318  Vector<Float> oldtsys = tsysCol_( irow ) ;
2319  Vector<Float> newspec( nChan, 0 ) ;
2320  Vector<uChar> newflag( nChan, true ) ;
2321  Vector<Float> newtsys ;
2322  bool regridTsys = false ;
2323  if (oldtsys.size() == oldspec.size()) {
2324    regridTsys = true ;
2325    newtsys.resize(nChan,false) ;
2326    newtsys = 0 ;
2327  }
2328 
2329  // regrid
2330  vector<double> abcissa = getAbcissa( irow ) ;
2331  int oldsize = abcissa.size() ;
2332  double olddnu = abcissa[1] - abcissa[0] ;
2333  //int ichan = 0 ;
2334  double wsum = 0.0 ;
2335  Vector<double> zi( nChan+1 ) ;
2336  Vector<double> yi( oldsize + 1 ) ;
2337  Block<uInt> count( nChan, 0 ) ;
2338  yi[0] = abcissa[0] - 0.5 * olddnu ;
2339  for ( int ii = 1 ; ii < oldsize ; ii++ )
2340    yi[ii] = 0.5* (abcissa[ii-1] + abcissa[ii]) ;
2341  yi[oldsize] = abcissa[oldsize-1] \
2342    + 0.5 * (abcissa[oldsize-1] - abcissa[oldsize-2]) ;
2343//   cout << "olddnu=" << olddnu << ", dnu=" << dnu << " (diff=" << olddnu-dnu << ")" << endl ;
2344//   cout << "yi[0]=" << yi[0] << ", fmin=" << fmin << " (diff=" << yi[0]-fmin << ")" << endl ;
2345//   cout << "oldsize=" << oldsize << ", nChan=" << nChan << endl ;
2346
2347  // do not regrid if input parameters are almost same as current
2348  // spectral setup
2349  double dnuDiff = abs( ( dnu - olddnu ) / olddnu ) ;
2350  double oldfmin = min( yi[0], yi[oldsize] ) ;
2351  double fminDiff = abs( ( fmin - oldfmin ) / oldfmin ) ;
2352  double nChanDiff = nChan - oldsize ;
2353  double eps = 1.0e-8 ;
2354  if ( nChanDiff == 0 && dnuDiff < eps && fminDiff < eps )
2355    return ;
2356
2357  //zi[0] = abcissa[0] - 0.5 * olddnu ;
2358  //zi[0] = ((olddnu*dnu > 0) ? yi[0] : yi[oldsize]) ;
2359  if ( dnu > 0 )
2360    zi[0] = fmin - 0.5 * dnu ;
2361  else
2362    zi[0] = fmin + nChan * abs(dnu) ;
2363  for ( int ii = 1 ; ii < nChan ; ii++ )
2364    zi[ii] = zi[0] + dnu * ii ;
2365  zi[nChan] = zi[nChan-1] + dnu ;
2366  // Access zi and yi in ascending order
2367  int izs = ((dnu > 0) ? 0 : nChan ) ;
2368  int ize = ((dnu > 0) ? nChan : 0 ) ;
2369  int izincr = ((dnu > 0) ? 1 : -1 ) ;
2370  int ichan =  ((olddnu > 0) ? 0 : oldsize ) ;
2371  int iye = ((olddnu > 0) ? oldsize : 0 ) ;
2372  int iyincr = ((olddnu > 0) ? 1 : -1 ) ;
2373  //for ( int ii = izs ; ii != ize ; ii+=izincr ){
2374  int ii = izs ;
2375  while (ii != ize) {
2376    // always zl < zr
2377    double zl = zi[ii] ;
2378    double zr = zi[ii+izincr] ;
2379    // Need to access smaller index for the new spec, flag, and tsys.
2380    // Values between zi[k] and zi[k+1] should be stored in newspec[k], etc.
2381    int i = min(ii, ii+izincr) ;
2382    //for ( int jj = ichan ; jj != iye ; jj+=iyincr ) {
2383    int jj = ichan ;
2384    while (jj != iye) {
2385      // always yl < yr
2386      double yl = yi[jj] ;
2387      double yr = yi[jj+iyincr] ;
2388      // Need to access smaller index for the original spec, flag, and tsys.
2389      // Values between yi[k] and yi[k+1] are stored in oldspec[k], etc.
2390      int j = min(jj, jj+iyincr) ;
2391      if ( yr <= zl ) {
2392        jj += iyincr ;
2393        continue ;
2394      }
2395      else if ( yl <= zl ) {
2396        if ( yr < zr ) {
2397          if (!oldflag[j]) {
2398            newspec[i] += oldspec[j] * ( yr - zl ) ;
2399            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - zl ) ;
2400            wsum += ( yr - zl ) ;
2401            count[i]++ ;
2402          }
2403          newflag[i] = newflag[i] && oldflag[j] ;
2404        }
2405        else {
2406          if (!oldflag[j]) {
2407            newspec[i] += oldspec[j] * abs(dnu) ;
2408            if (regridTsys) newtsys[i] += oldtsys[j] * abs(dnu) ;
2409            wsum += abs(dnu) ;
2410            count[i]++ ;
2411          }
2412          newflag[i] = newflag[i] && oldflag[j] ;
2413          ichan = jj ;
2414          break ;
2415        }
2416      }
2417      else if ( yl < zr ) {
2418        if ( yr <= zr ) {
2419          if (!oldflag[j]) {
2420            newspec[i] += oldspec[j] * ( yr - yl ) ;
2421            if (regridTsys) newtsys[i] += oldtsys[j] * ( yr - yl ) ;
2422            wsum += ( yr - yl ) ;
2423            count[i]++ ;
2424          }
2425          newflag[i] = newflag[i] && oldflag[j] ;
2426        }
2427        else {
2428          if (!oldflag[j]) {
2429            newspec[i] += oldspec[j] * ( zr - yl ) ;
2430            if (regridTsys) newtsys[i] += oldtsys[j] * ( zr - yl ) ;
2431            wsum += ( zr - yl ) ;
2432            count[i]++ ;
2433          }
2434          newflag[i] = newflag[i] && oldflag[j] ;
2435          ichan = jj ;
2436          break ;
2437        }
2438      }
2439      else {
2440        //ichan = jj - iyincr ;
2441        break ;
2442      }
2443      jj += iyincr ;
2444    }
2445    if ( wsum != 0.0 ) {
2446      newspec[i] /= wsum ;
2447      if (regridTsys) newtsys[i] /= wsum ;
2448    }
2449    wsum = 0.0 ;
2450    ii += izincr ;
2451  }
2452
2453  // flag out channels without data
2454  // this is tentative since there is no specific definition
2455  // on bit flag...
2456  uChar noData = 1 << 7 ;
2457  for ( Int i = 0 ; i < nChan ; i++ ) {
2458    if ( count[i] == 0 )
2459      newflag[i] = noData ;
2460  }
2461
2462  specCol_.put( irow, newspec ) ;
2463  flagsCol_.put( irow, newflag ) ;
2464  if (regridTsys) tsysCol_.put( irow, newtsys );
2465
2466  return ;
2467}
2468
[1730]2469std::vector<float> Scantable::getWeather(int whichrow) const
2470{
2471  std::vector<float> out(5);
2472  //Float temperature, pressure, humidity, windspeed, windaz;
2473  weatherTable_.getEntry(out[0], out[1], out[2], out[3], out[4],
2474                         mweatheridCol_(uInt(whichrow)));
2475
2476
2477  return out;
[1391]2478}
[1730]2479
[2047]2480bool Scantable::getFlagtraFast(uInt whichrow)
[1907]2481{
2482  uChar flag;
2483  Vector<uChar> flags;
[2047]2484  flagsCol_.get(whichrow, flags);
[2012]2485  flag = flags[0];
[2047]2486  for (uInt i = 1; i < flags.size(); ++i) {
[2012]2487    flag &= flags[i];
2488  }
2489  return ((flag >> 7) == 1);
2490}
2491
[2767]2492std::vector<std::string> Scantable::applyBaselineTable(const std::string& bltable, const std::string& outbltable, const bool outbltableexists, const bool overwrite)
[2047]2493{
[2773]2494  STBaselineTable btin = STBaselineTable(bltable);
[2767]2495
[2773]2496  Vector<Bool> applyCol = btin.getApply();
[2767]2497  int nRowBl = applyCol.size();
2498  if (nRowBl != nrow()) {
2499    throw(AipsError("Scantable and bltable have different number of rows."));
2500  }
2501
2502  std::vector<std::string> res;
2503  res.clear();
2504
2505  bool outBaselineTable = ((outbltable != "") && (!outbltableexists || overwrite));
2506  bool bltableidentical = (bltable == outbltable);
[2773]2507  STBaselineTable btout = STBaselineTable(*this);
2508  ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2509  Vector<Double> timeSecCol = tcol.getColumn();
[2767]2510
2511  for (int whichrow = 0; whichrow < nRowBl; ++whichrow) {
2512    if (applyCol[whichrow]) {
2513      std::vector<float> spec = getSpectrum(whichrow);
2514
[2773]2515      std::vector<bool> mask = btin.getMask(whichrow);  //use mask_bltable only
[2767]2516
[2773]2517      STBaselineFunc::FuncName ftype = btin.getFunctionName(whichrow);
2518      std::vector<int> fpar = btin.getFuncParam(whichrow);
[2767]2519      std::vector<float> params;
2520      float rms;
2521      std::vector<float> resfit = doApplyBaselineTable(spec, mask, ftype, fpar, params, rms);
2522
2523      setSpectrum(resfit, whichrow);
2524
2525      res.push_back(packFittingResults(whichrow, params, rms));
2526
2527      if (outBaselineTable) {
2528        if (outbltableexists) {
2529          if (overwrite) {
2530            if (bltableidentical) {
[2773]2531              btin.setresult(uInt(whichrow), Vector<Float>(params), Float(rms));
[2767]2532            } else {
[2773]2533              btout.setresult(uInt(whichrow), Vector<Float>(params), Float(rms));
[2767]2534            }
2535          }
2536        } else {
[2773]2537          btout.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
2538                           getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
2539                           true, ftype, fpar, std::vector<float>(),
2540                           getMaskListFromMask(mask), params, rms, spec.size(),
2541                           3.0, 0, 0.0, 0, std::vector<int>());
[2767]2542        }
2543      }
2544    }
2545  }
2546
2547  if (outBaselineTable) {
2548    if (bltableidentical) {
[2773]2549      btin.save(outbltable);
[2767]2550    } else {
[2773]2551      btout.save(outbltable);
[2767]2552    }
2553  }
2554
2555  return res;
2556}
2557
2558std::vector<std::string> Scantable::subBaseline(const std::vector<std::string>& blInfoList, const std::string& outbltable, const bool outbltableexists, const bool overwrite)
2559{
2560  int nRowBl = blInfoList.size();
2561  int nRowSt = nrow();
2562
2563  std::vector<std::string> res;
2564  res.clear();
2565
2566  bool outBaselineTable = ((outbltable != "") && (!outbltableexists || overwrite));
2567  if ((outbltable != "") && outbltableexists && !overwrite) {
2568    throw(AipsError("Cannot overwrite bltable. Set overwrite=True."));
2569  }
2570
[2773]2571  STBaselineTable bt = STBaselineTable(*this);
2572  ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2573  Vector<Double> timeSecCol = tcol.getColumn();
[2767]2574
2575  if (outBaselineTable && !outbltableexists) {
2576    for (int i = 0; i < nRowSt; ++i) {
[2773]2577      bt.appendbasedata(getScan(i), getCycle(i), getBeam(i), getIF(i), getPol(i),
[2767]2578                         0, timeSecCol[i]);
[2773]2579      bt.setApply(i, false);
[2767]2580    }
2581  }
2582
2583  for (int i = 0; i < nRowBl; ++i) {
2584    int irow;
2585    STBaselineFunc::FuncName ftype;
2586    std::vector<bool> mask;
2587    std::vector<int> fpar;
2588    float clipth;
2589    int clipn;
2590    bool uself;
2591    float lfth;
2592    std::vector<int> lfedge;
2593    int lfavg;
2594    parseBlInfo(blInfoList[i], irow, ftype, fpar, mask, clipth, clipn, uself, lfth, lfedge, lfavg);
2595
2596    if (irow < nRowSt) {
2597      std::vector<float> spec = getSpectrum(irow);
2598      std::vector<float> params;
2599      float rms;
2600      std::vector<bool> finalmask;
2601
2602      std::vector<float> resfit = doSubtractBaseline(spec, mask, ftype, fpar, params, rms, finalmask, clipth, clipn, uself, irow, lfth, lfedge, lfavg);
2603      setSpectrum(resfit, irow);
2604      res.push_back(packFittingResults(irow, params, rms));
2605
2606      if (outBaselineTable) {
2607        Vector<Int> fparam(fpar.size());
2608        for (uInt j = 0; j < fparam.size(); ++j) {
2609          fparam[j] = (Int)fpar[j];
2610        }
2611
[2773]2612        bt.setdata(uInt(irow),
[2767]2613                    uInt(getScan(irow)), uInt(getCycle(irow)),
2614                    uInt(getBeam(irow)), uInt(getIF(irow)), uInt(getPol(irow)),
2615                    uInt(0), timeSecCol[irow], Bool(true), ftype, fparam,
[2773]2616                    Vector<Float>(), getMaskListFromMask(finalmask), Vector<Float>(params),
[2767]2617                    Float(rms), uInt(spec.size()), Float(clipth), uInt(clipn),
2618                    Float(0.0), uInt(0), Vector<uInt>());
2619      }
2620
2621    }
2622  }
2623
2624  if (outBaselineTable) {
[2773]2625    bt.save(outbltable);
[2767]2626  }
2627
2628  return res;
2629}
2630
[2773]2631std::vector<float> Scantable::doApplyBaselineTable(std::vector<float>& spec,
2632                                                   std::vector<bool>& mask,
2633                                                   const STBaselineFunc::FuncName ftype,
2634                                                   std::vector<int>& fpar,
2635                                                   std::vector<float>& params,
2636                                                   float&rms)
[2767]2637{
2638  std::vector<bool> finalmask;
2639  std::vector<int> lfedge;
2640  return doSubtractBaseline(spec, mask, ftype, fpar, params, rms, finalmask, 0.0, 0, false, 0, 0.0, lfedge, 0);
2641}
2642
[2774]2643std::vector<float> Scantable::doSubtractBaseline(std::vector<float>& spec,
2644                                                 std::vector<bool>& mask,
2645                                                 const STBaselineFunc::FuncName ftype,
2646                                                 std::vector<int>& fpar,
2647                                                 std::vector<float>& params,
2648                                                 float&rms,
2649                                                 std::vector<bool>& finalmask,
2650                                                 float clipth,
2651                                                 int clipn,
2652                                                 bool uself,
2653                                                 int irow,
2654                                                 float lfth,
2655                                                 std::vector<int>& lfedge,
2656                                                 int lfavg)
[2767]2657{
2658  if (uself) {
2659    STLineFinder lineFinder = STLineFinder();
[2774]2660    initLineFinder(lfedge, lfth, lfavg, lineFinder);
[2767]2661    std::vector<int> currentEdge;
[2774]2662    mask = getCompositeChanMask(irow, mask, lfedge, currentEdge, lineFinder);
[2767]2663  }
2664
2665  std::vector<float> res;
2666  if (ftype == STBaselineFunc::Polynomial) {
2667    res = doPolynomialFitting(spec, mask, fpar[0], params, rms, finalmask, clipth, clipn);
2668  } else if (ftype == STBaselineFunc::Chebyshev) {
2669    res = doChebyshevFitting(spec, mask, fpar[0], params, rms, finalmask, clipth, clipn);
2670  } else if (ftype == STBaselineFunc::CSpline) {
2671    if (fpar.size() > 1) { // reading from baseline table in which pieceEdges are already calculated and stored.
2672      res = doCubicSplineFitting(spec, mask, fpar, params, rms, finalmask, clipth, clipn);
2673    } else {               // usual cspline fitting by giving nPiece only. fpar will be replaced with pieceEdges.
2674      res = doCubicSplineFitting(spec, mask, fpar[0], fpar, params, rms, finalmask, clipth, clipn);
2675    }
2676  } else if (ftype == STBaselineFunc::Sinusoid) {
2677    res = doSinusoidFitting(spec, mask, fpar, params, rms, finalmask, clipth, clipn);
2678  }
2679
2680  return res;
2681}
2682
2683std::string Scantable::packFittingResults(const int irow, const std::vector<float>& params, const float rms)
2684{
2685  // returned value: "irow:params[0],params[1],..,params[n-1]:rms"
2686  ostringstream os;
2687  os << irow << ':';
2688  for (uInt i = 0; i < params.size(); ++i) {
2689    if (i > 0) {
2690      os << ',';
2691    }
2692    os << params[i];
2693  }
2694  os << ':' << rms;
2695
2696  return os.str();
2697}
2698
2699void Scantable::parseBlInfo(const std::string& blInfo, int& irow, STBaselineFunc::FuncName& ftype, std::vector<int>& fpar, std::vector<bool>& mask, float& thresClip, int& nIterClip, bool& useLineFinder, float& thresLF, std::vector<int>& edgeLF, int& avgLF)
2700{
2701  // The baseline info to be parsed must be column-delimited string like
2702  // "0:chebyshev:5:3,5,169,174,485,487" where the elements are
2703  // row number, funcType, funcOrder, maskList, clipThreshold, clipNIter,
2704  // useLineFinder, lfThreshold, lfEdge and lfChanAvgLimit.
2705
2706  std::vector<string> res = splitToStringList(blInfo, ':');
2707  if (res.size() < 4) {
2708    throw(AipsError("baseline info has bad format")) ;
2709  }
2710
2711  string ftype0, fpar0, masklist0, uself0, edge0;
2712  std::vector<int> masklist;
2713
2714  stringstream ss;
2715  ss << res[0];
2716  ss >> irow;
2717  ss.clear(); ss.str("");
2718
2719  ss << res[1];
2720  ss >> ftype0;
2721  if (ftype0 == "poly") {
2722    ftype = STBaselineFunc::Polynomial;
2723  } else if (ftype0 == "cspline") {
2724    ftype = STBaselineFunc::CSpline;
2725  } else if (ftype0 == "sinusoid") {
2726    ftype = STBaselineFunc::Sinusoid;
2727  } else if (ftype0 == "chebyshev") {
2728    ftype = STBaselineFunc::Chebyshev;
2729  } else {
2730    throw(AipsError("invalid function type."));
2731  }
2732  ss.clear(); ss.str("");
2733
2734  ss << res[2];
2735  ss >> fpar0;
2736  fpar = splitToIntList(fpar0, ',');
2737  ss.clear(); ss.str("");
2738
2739  ss << res[3];
2740  ss >> masklist0;
2741  mask = getMaskFromMaskList(nchan(getIF(irow)), splitToIntList(masklist0, ','));
2742
2743  ss << res[4];
2744  ss >> thresClip;
2745  ss.clear(); ss.str("");
2746
2747  ss << res[5];
2748  ss >> nIterClip;
2749  ss.clear(); ss.str("");
2750
2751  ss << res[6];
2752  ss >> uself0;
2753  if (uself0 == "true") {
2754    useLineFinder = true;
2755  } else {
2756    useLineFinder = false;
2757  }
2758  ss.clear(); ss.str("");
2759
2760  if (useLineFinder) {
2761    ss << res[7];
2762    ss >> thresLF;
2763    ss.clear(); ss.str("");
2764
2765    ss << res[8];
2766    ss >> edge0;
2767    edgeLF = splitToIntList(edge0, ',');
2768    ss.clear(); ss.str("");
2769
2770    ss << res[9];
2771    ss >> avgLF;
2772    ss.clear(); ss.str("");
2773  }
2774
2775}
2776
2777std::vector<int> Scantable::splitToIntList(const std::string& s, const char delim)
2778{
2779  istringstream iss(s);
2780  string tmp;
2781  int tmpi;
2782  std::vector<int> res;
2783  stringstream ss;
2784  while (getline(iss, tmp, delim)) {
2785    ss << tmp;
2786    ss >> tmpi;
2787    res.push_back(tmpi);
2788    ss.clear(); ss.str("");
2789  }
2790
2791  return res;
2792}
2793
2794std::vector<string> Scantable::splitToStringList(const std::string& s, const char delim)
2795{
2796  istringstream iss(s);
2797  std::string tmp;
2798  std::vector<string> res;
2799  while (getline(iss, tmp, delim)) {
2800    res.push_back(tmp);
2801  }
2802
2803  return res;
2804}
2805
2806std::vector<bool> Scantable::getMaskFromMaskList(const int nchan, const std::vector<int>& masklist)
2807{
2808  if (masklist.size() % 2 != 0) {
2809    throw(AipsError("masklist must have even number of elements."));
2810  }
2811
2812  std::vector<bool> res(nchan);
2813
2814  for (int i = 0; i < nchan; ++i) {
2815    res[i] = false;
2816  }
2817  for (uInt j = 0; j < masklist.size(); j += 2) {
2818    for (int i = masklist[j]; i <= masklist[j+1]; ++i) {
2819      res[i] = true;
2820    }
2821  }
2822
2823  return res;
2824}
2825
[2773]2826Vector<uInt> Scantable::getMaskListFromMask(const std::vector<bool>& mask)
[2767]2827{
[2773]2828  std::vector<int> masklist;
2829  masklist.clear();
2830
2831  for (uInt i = 0; i < mask.size(); ++i) {
2832    if (mask[i]) {
2833      if ((i == 0)||(i == mask.size()-1)) {
2834        masklist.push_back(i);
2835      } else {
2836        if ((mask[i])&&(!mask[i-1])) {
2837          masklist.push_back(i);
2838        }
2839        if ((mask[i])&&(!mask[i+1])) {
2840          masklist.push_back(i);
2841        }
2842      }
2843    }
2844  }
2845
2846  Vector<uInt> res(masklist.size());
2847  for (uInt i = 0; i < masklist.size(); ++i) {
2848    res[i] = (uInt)masklist[i];
2849  }
2850
2851  return res;
2852}
2853
2854void Scantable::initialiseBaselining(const std::string& blfile,
2855                                     ofstream& ofs,
2856                                     const bool outLogger,
2857                                     bool& outTextFile,
2858                                     bool& csvFormat,
2859                                     String& coordInfo,
2860                                     bool& hasSameNchan,
2861                                     const std::string& progressInfo,
2862                                     bool& showProgress,
2863                                     int& minNRow,
2864                                     Vector<Double>& timeSecCol)
2865{
2866  csvFormat = false;
2867  outTextFile = false;
2868
2869  if (blfile != "") {
2870    csvFormat = (blfile.substr(0, 1) == "T");
2871    ofs.open(blfile.substr(1).c_str(), ios::out | ios::app);
2872    if (ofs) outTextFile = true;
2873  }
2874
2875  coordInfo = "";
2876  hasSameNchan = true;
2877
2878  if (outLogger || outTextFile) {
2879    coordInfo = getCoordInfo()[0];
2880    if (coordInfo == "") coordInfo = "channel";
2881    hasSameNchan = hasSameNchanOverIFs();
2882  }
2883
2884  parseProgressInfo(progressInfo, showProgress, minNRow);
2885
2886  ROScalarColumn<Double> tcol = ROScalarColumn<Double>(table_, "TIME");
2887  timeSecCol = tcol.getColumn();
2888}
2889
2890void Scantable::finaliseBaselining(const bool outBaselineTable,
2891                                   STBaselineTable* pbt,
2892                                   const string& bltable,
2893                                   const bool outTextFile,
2894                                   ofstream& ofs)
2895{
2896  if (outBaselineTable) {
2897    pbt->save(bltable);
2898  }
2899
2900  if (outTextFile) ofs.close();
2901}
2902
2903void Scantable::initLineFinder(const std::vector<int>& edge,
2904                               const float threshold,
2905                               const int chanAvgLimit,
2906                               STLineFinder& lineFinder)
2907{
[2774]2908  if ((edge.size() > 2) && (edge.size() < getIFNos().size()*2)) {
[2773]2909    throw(AipsError("Length of edge element info is less than that of IFs"));
2910  }
2911
2912  lineFinder.setOptions(threshold, 3, chanAvgLimit);
2913}
2914
2915void Scantable::polyBaseline(const std::vector<bool>& mask, int order,
2916                             float thresClip, int nIterClip,
2917                             bool getResidual,
2918                             const std::string& progressInfo,
2919                             const bool outLogger, const std::string& blfile,
2920                             const std::string& bltable)
2921{
[2774]2922  /****
[2767]2923  double TimeStart = mathutil::gettimeofday_sec();
[2774]2924  ****/
[2767]2925
[2193]2926  try {
2927    ofstream ofs;
[2773]2928    String coordInfo;
2929    bool hasSameNchan, outTextFile, csvFormat, showProgress;
[2193]2930    int minNRow;
[2767]2931    int nRow = nrow();
[2773]2932    std::vector<bool> chanMask, finalChanMask;
[2767]2933    float rms;
[2773]2934    bool outBaselineTable = (bltable != "");
2935    STBaselineTable bt = STBaselineTable(*this);
2936    Vector<Double> timeSecCol;
[2767]2937
[2773]2938    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
2939                         coordInfo, hasSameNchan,
2940                         progressInfo, showProgress, minNRow,
2941                         timeSecCol);
[2767]2942
[2773]2943    std::vector<int> nChanNos;
2944    std::vector<std::vector<std::vector<double> > > modelReservoir;
2945    modelReservoir = getPolynomialModelReservoir(order,
2946                                                 &Scantable::getNormalPolynomial,
2947                                                 nChanNos);
2948
[2193]2949    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
[2767]2950      std::vector<float> sp = getSpectrum(whichrow);
[2193]2951      chanMask = getCompositeChanMask(whichrow, mask);
[2773]2952
2953      std::vector<float> params;
[2767]2954      int nClipped = 0;
[2773]2955      std::vector<float> res = doLeastSquareFitting(sp, chanMask,
2956                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
2957                                   params, rms, finalChanMask,
2958                                   nClipped, thresClip, nIterClip, getResidual);
[2767]2959
[2773]2960      if (outBaselineTable) {
2961        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
2962                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
2963                      true, STBaselineFunc::Polynomial, order, std::vector<float>(),
2964                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
2965                      thresClip, nIterClip, 0.0, 0, std::vector<int>());
[2767]2966      } else {
2967        setSpectrum(res, whichrow);
2968      }
2969
[2773]2970      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
2971                          coordInfo, hasSameNchan, ofs, "polyBaseline()",
2972                          params, nClipped);
[2193]2973      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
2974    }
2975
[2773]2976    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
[2193]2977
2978  } catch (...) {
2979    throw;
[2047]2980  }
[2767]2981
[2774]2982  /****
[2767]2983  double TimeEnd = mathutil::gettimeofday_sec();
2984  double elapse1 = TimeEnd - TimeStart;
2985  std::cout << "poly-new   : " << elapse1 << " (sec.)" << endl;
[2774]2986  ****/
[2047]2987}
2988
[2773]2989void Scantable::autoPolyBaseline(const std::vector<bool>& mask, int order,
2990                                 float thresClip, int nIterClip,
2991                                 const std::vector<int>& edge,
2992                                 float threshold, int chanAvgLimit,
2993                                 bool getResidual,
2994                                 const std::string& progressInfo,
2995                                 const bool outLogger, const std::string& blfile,
2996                                 const std::string& bltable)
[2047]2997{
[2193]2998  try {
2999    ofstream ofs;
[2773]3000    String coordInfo;
3001    bool hasSameNchan, outTextFile, csvFormat, showProgress;
[2767]3002    int minNRow;
3003    int nRow = nrow();
[2773]3004    std::vector<bool> chanMask, finalChanMask;
[2767]3005    float rms;
[2773]3006    bool outBaselineTable = (bltable != "");
3007    STBaselineTable bt = STBaselineTable(*this);
3008    Vector<Double> timeSecCol;
3009    STLineFinder lineFinder = STLineFinder();
[2189]3010
[2773]3011    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3012                         coordInfo, hasSameNchan,
3013                         progressInfo, showProgress, minNRow,
3014                         timeSecCol);
[2767]3015
[2773]3016    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3017
3018    std::vector<int> nChanNos;
3019    std::vector<std::vector<std::vector<double> > > modelReservoir;
3020    modelReservoir = getPolynomialModelReservoir(order,
3021                                                 &Scantable::getNormalPolynomial,
3022                                                 nChanNos);
3023
[2193]3024    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
[2767]3025      std::vector<float> sp = getSpectrum(whichrow);
[2193]3026      std::vector<int> currentEdge;
[2773]3027      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
[2193]3028
[2773]3029      std::vector<float> params;
[2767]3030      int nClipped = 0;
[2773]3031      std::vector<float> res = doLeastSquareFitting(sp, chanMask,
3032                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3033                                   params, rms, finalChanMask,
3034                                   nClipped, thresClip, nIterClip, getResidual);
[2193]3035
[2773]3036      if (outBaselineTable) {
3037        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3038                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3039                      true, STBaselineFunc::Polynomial, order, std::vector<float>(),
3040                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3041                      thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
[2767]3042      } else {
3043        setSpectrum(res, whichrow);
3044      }
3045
[2773]3046      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3047                          coordInfo, hasSameNchan, ofs, "autoPolyBaseline()",
3048                          params, nClipped);
[2193]3049      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
[2047]3050    }
3051
[2773]3052    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
[2767]3053
[2193]3054  } catch (...) {
3055    throw;
[2047]3056  }
3057}
3058
[2773]3059void Scantable::chebyshevBaseline(const std::vector<bool>& mask, int order,
3060                                  float thresClip, int nIterClip,
3061                                  bool getResidual,
3062                                  const std::string& progressInfo,
3063                                  const bool outLogger, const std::string& blfile,
3064                                  const std::string& bltable)
[2645]3065{
[2774]3066  /*
[2767]3067  double TimeStart = mathutil::gettimeofday_sec();
[2774]3068  */
[2767]3069
[2645]3070  try {
3071    ofstream ofs;
[2773]3072    String coordInfo;
3073    bool hasSameNchan, outTextFile, csvFormat, showProgress;
[2645]3074    int minNRow;
3075    int nRow = nrow();
[2773]3076    std::vector<bool> chanMask, finalChanMask;
[2737]3077    float rms;
[2773]3078    bool outBaselineTable = (bltable != "");
3079    STBaselineTable bt = STBaselineTable(*this);
3080    Vector<Double> timeSecCol;
[2737]3081
[2773]3082    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3083                         coordInfo, hasSameNchan,
3084                         progressInfo, showProgress, minNRow,
3085                         timeSecCol);
[2737]3086
[2773]3087    std::vector<int> nChanNos;
3088    std::vector<std::vector<std::vector<double> > > modelReservoir;
3089    modelReservoir = getPolynomialModelReservoir(order,
3090                                                 &Scantable::getChebyshevPolynomial,
3091                                                 nChanNos);
3092
[2645]3093    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3094      std::vector<float> sp = getSpectrum(whichrow);
3095      chanMask = getCompositeChanMask(whichrow, mask);
[2773]3096
3097      std::vector<float> params;
[2645]3098      int nClipped = 0;
[2773]3099      std::vector<float> res = doLeastSquareFitting(sp, chanMask,
3100                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3101                                   params, rms, finalChanMask,
3102                                   nClipped, thresClip, nIterClip, getResidual);
[2645]3103
[2773]3104      if (outBaselineTable) {
3105        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3106                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3107                      true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3108                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3109                      thresClip, nIterClip, 0.0, 0, std::vector<int>());
[2737]3110      } else {
3111        setSpectrum(res, whichrow);
3112      }
3113
[2773]3114      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3115                          coordInfo, hasSameNchan, ofs, "chebyshevBaseline()",
3116                          params, nClipped);
[2645]3117      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3118    }
3119   
[2773]3120    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
[2737]3121
[2645]3122  } catch (...) {
3123    throw;
3124  }
[2767]3125
[2774]3126  /*
[2767]3127  double TimeEnd = mathutil::gettimeofday_sec();
3128  double elapse1 = TimeEnd - TimeStart;
3129  std::cout << "cheby   : " << elapse1 << " (sec.)" << endl;
[2774]3130  */
[2645]3131}
3132
[2773]3133void Scantable::autoChebyshevBaseline(const std::vector<bool>& mask, int order,
3134                                      float thresClip, int nIterClip,
3135                                      const std::vector<int>& edge,
3136                                      float threshold, int chanAvgLimit,
3137                                      bool getResidual,
3138                                      const std::string& progressInfo,
3139                                      const bool outLogger, const std::string& blfile,
3140                                      const std::string& bltable)
[2767]3141{
3142  try {
3143    ofstream ofs;
[2773]3144    String coordInfo;
3145    bool hasSameNchan, outTextFile, csvFormat, showProgress;
[2767]3146    int minNRow;
3147    int nRow = nrow();
[2773]3148    std::vector<bool> chanMask, finalChanMask;
[2767]3149    float rms;
[2773]3150    bool outBaselineTable = (bltable != "");
3151    STBaselineTable bt = STBaselineTable(*this);
3152    Vector<Double> timeSecCol;
3153    STLineFinder lineFinder = STLineFinder();
[2767]3154
[2773]3155    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3156                         coordInfo, hasSameNchan,
3157                         progressInfo, showProgress, minNRow,
3158                         timeSecCol);
[2767]3159
[2773]3160    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3161
3162    std::vector<int> nChanNos;
3163    std::vector<std::vector<std::vector<double> > > modelReservoir;
3164    modelReservoir = getPolynomialModelReservoir(order,
3165                                                 &Scantable::getChebyshevPolynomial,
3166                                                 nChanNos);
3167
[2767]3168    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
3169      std::vector<float> sp = getSpectrum(whichrow);
3170      std::vector<int> currentEdge;
[2773]3171      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
[2767]3172
[2773]3173      std::vector<float> params;
[2767]3174      int nClipped = 0;
[2773]3175      std::vector<float> res = doLeastSquareFitting(sp, chanMask,
3176                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3177                                   params, rms, finalChanMask,
3178                                   nClipped, thresClip, nIterClip, getResidual);
[2767]3179
[2773]3180      if (outBaselineTable) {
3181        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3182                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3183                      true, STBaselineFunc::Chebyshev, order, std::vector<float>(),
3184                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3185                      thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
[2767]3186      } else {
3187        setSpectrum(res, whichrow);
3188      }
3189
[2773]3190      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3191                          coordInfo, hasSameNchan, ofs, "autoChebyshevBaseline()",
3192                          params, nClipped);
[2767]3193      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3194    }
3195
[2773]3196    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
[2767]3197
3198  } catch (...) {
3199    throw;
3200  }
3201}
3202
[2774]3203double Scantable::calculateModelSelectionCriteria(const std::string& valname,
3204                                                  const std::string& blfunc,
3205                                                  int order,
3206                                                  const std::vector<bool>& inMask,
3207                                                  int whichrow,
3208                                                  bool useLineFinder,
3209                                                  const std::vector<int>& edge,
3210                                                  float threshold,
3211                                                  int chanAvgLimit)
[2713]3212{
[2767]3213  std::vector<float> sp = getSpectrum(whichrow);
3214  std::vector<bool> chanMask;
3215  chanMask.clear();
3216
[2713]3217  if (useLineFinder) {
[2774]3218    STLineFinder lineFinder = STLineFinder();
3219    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
[2713]3220    std::vector<int> currentEdge;
[2774]3221    chanMask = getCompositeChanMask(whichrow, inMask, edge, currentEdge, lineFinder);
[2713]3222  } else {
[2767]3223    chanMask = getCompositeChanMask(whichrow, inMask);
[2713]3224  }
3225
[2767]3226  return doCalculateModelSelectionCriteria(valname, sp, chanMask, blfunc, order);
[2713]3227}
3228
3229double Scantable::doCalculateModelSelectionCriteria(const std::string& valname, const std::vector<float>& spec, const std::vector<bool>& mask, const std::string& blfunc, int order)
3230{
3231  int nparam;
3232  std::vector<float> params;
[2737]3233  std::vector<bool> finalChanMask;
3234  float rms;
[2713]3235  int nClipped = 0;
3236  std::vector<float> res;
[2767]3237  if (blfunc == "poly") {
[2713]3238    nparam = order + 1;
[2767]3239    res = doPolynomialFitting(spec, mask, order, params, rms, finalChanMask, nClipped);
3240  } else if (blfunc == "chebyshev") {
3241    nparam = order + 1;
3242    res = doChebyshevFitting(spec, mask, order, params, rms, finalChanMask, nClipped);
3243  } else if (blfunc == "cspline") {
3244    std::vector<int> pieceEdges;//(order+1);  //order = npiece
3245    nparam = order + 3;
3246    res = doCubicSplineFitting(spec, mask, order, false, pieceEdges, params, rms, finalChanMask, nClipped);
[2713]3247  } else if (blfunc == "sinusoid") {
3248    std::vector<int> nWaves;
3249    nWaves.clear();
3250    for (int i = 0; i <= order; ++i) {
3251      nWaves.push_back(i);
3252    }
3253    nparam = 2*order + 1;  // order = nwave
[2767]3254    res = doSinusoidFitting(spec, mask, nWaves, params, rms, finalChanMask, nClipped);
[2713]3255  } else {
[2767]3256    throw(AipsError("blfunc must be poly, chebyshev, cspline or sinusoid."));
[2713]3257  }
3258
3259  double msq = 0.0;
3260  int nusedchan = 0;
3261  int nChan = res.size();
3262  for (int i = 0; i < nChan; ++i) {
3263    if (mask[i]) {
3264      msq += (double)res[i]*(double)res[i];
3265      nusedchan++;
3266    }
3267  }
3268  if (nusedchan == 0) {
3269    throw(AipsError("all channels masked."));
3270  }
3271  msq /= (double)nusedchan;
3272
3273  nparam++;  //add 1 for sigma of Gaussian distribution
3274  const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
3275
3276  if (valname.find("aic") == 0) {
3277    // Original Akaike Information Criterion (AIC)
3278    double aic = nusedchan * (log(2.0 * PI * msq) + 1.0) + 2.0 * nparam;
3279
[2767]3280    // Corrected AIC by Sugiura(1978) (AICc)
[2713]3281    if (valname == "aicc") {
3282      if (nusedchan - nparam - 1 <= 0) {
3283        throw(AipsError("channel size is too small to calculate AICc."));
3284      }
3285      aic += 2.0*nparam*(nparam + 1)/(double)(nusedchan - nparam - 1);
3286    }
3287
3288    return aic;
3289
3290  } else if (valname == "bic") {
3291    // Bayesian Information Criterion (BIC)
3292    double bic = nusedchan * log(msq) + nparam * log((double)nusedchan);
3293    return bic;
3294
3295  } else if (valname == "gcv") {
3296    // Generalised Cross Validation
3297    double x = 1.0 - (double)nparam / (double)nusedchan;
3298    double gcv = msq / (x * x);
3299    return gcv;
3300
3301  } else {
3302    throw(AipsError("valname must be aic, aicc, bic or gcv."));
3303  }
3304}
3305
[2767]3306double Scantable::getNormalPolynomial(int n, double x) {
3307  if (n == 0) {
3308    return 1.0;
3309  } else if (n > 0) {
3310    double res = 1.0;
3311    for (int i = 0; i < n; ++i) {
3312      res *= x;
[2645]3313    }
[2767]3314    return res;
3315  } else {
3316    if (x == 0.0) {
3317      throw(AipsError("infinity result: x=0 given for negative power."));
3318    } else {
3319      return pow(x, (double)n);
[2645]3320    }
3321  }
3322}
3323
3324double Scantable::getChebyshevPolynomial(int n, double x) {
3325  if ((x < -1.0)||(x > 1.0)) {
3326    throw(AipsError("out of definition range (-1 <= x <= 1)."));
[2713]3327  } else if (x == 1.0) {
3328    return 1.0;
3329  } else if (x == 0.0) {
3330    double res;
3331    if (n%2 == 0) {
3332      if (n%4 == 0) {
3333        res = 1.0;
3334      } else {
3335        res = -1.0;
3336      }
3337    } else {
3338      res = 0.0;
3339    }
3340    return res;
3341  } else if (x == -1.0) {
3342    double res = (n%2 == 0 ? 1.0 : -1.0);
3343    return res;
[2645]3344  } else if (n < 0) {
3345    throw(AipsError("the order must be zero or positive."));
3346  } else if (n == 0) {
3347    return 1.0;
3348  } else if (n == 1) {
3349    return x;
3350  } else {
3351    double res = 0.0;
3352    for (int m = 0; m <= n/2; ++m) {
3353      double c = 1.0;
3354      if (m > 0) {
3355        for (int i = 1; i <= m; ++i) {
3356          c *= (double)(n-2*m+i)/(double)i;
3357        }
3358      }
[2713]3359      res += (m%2 == 0 ? 1.0 : -1.0)*(double)n/(double)(n-m)*pow(2.0*x, (double)(n-2*m))/2.0*c;
[2645]3360    }
3361    return res;
3362  }
3363}
3364
[2773]3365std::vector<float> Scantable::doPolynomialFitting(const std::vector<float>& data,
3366                                                  const std::vector<bool>& mask,
3367                                                  int order,
3368                                                  std::vector<float>& params,
3369                                                  float& rms,
3370                                                  std::vector<bool>& finalmask,
3371                                                  float clipth,
3372                                                  int clipn)
[2645]3373{
[2767]3374  int nClipped = 0;
3375  return doPolynomialFitting(data, mask, order, params, rms, finalmask, nClipped, clipth, clipn);
3376}
3377
[2773]3378std::vector<float> Scantable::doPolynomialFitting(const std::vector<float>& data,
3379                                                  const std::vector<bool>& mask,
3380                                                  int order,
3381                                                  std::vector<float>& params,
3382                                                  float& rms,
3383                                                  std::vector<bool>& finalMask,
3384                                                  int& nClipped,
3385                                                  float thresClip,
3386                                                  int nIterClip,
3387                                                  bool getResidual)
[2767]3388{
[2773]3389  return doLeastSquareFitting(data, mask,
3390                              getPolynomialModel(order, data.size(), &Scantable::getNormalPolynomial),
3391                              params, rms, finalMask,
3392                              nClipped, thresClip, nIterClip,
3393                              getResidual);
[2767]3394}
3395
[2773]3396std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data,
3397                                                 const std::vector<bool>& mask,
3398                                                 int order,
3399                                                 std::vector<float>& params,
3400                                                 float& rms,
3401                                                 std::vector<bool>& finalmask,
3402                                                 float clipth,
3403                                                 int clipn)
[2767]3404{
3405  int nClipped = 0;
3406  return doChebyshevFitting(data, mask, order, params, rms, finalmask, nClipped, clipth, clipn);
3407}
3408
[2773]3409std::vector<float> Scantable::doChebyshevFitting(const std::vector<float>& data,
3410                                                 const std::vector<bool>& mask,
3411                                                 int order,
3412                                                 std::vector<float>& params,
3413                                                 float& rms,
3414                                                 std::vector<bool>& finalMask,
3415                                                 int& nClipped,
3416                                                 float thresClip,
3417                                                 int nIterClip,
3418                                                 bool getResidual)
[2767]3419{
[2773]3420  return doLeastSquareFitting(data, mask,
3421                              getPolynomialModel(order, data.size(), &Scantable::getChebyshevPolynomial),
3422                              params, rms, finalMask,
3423                              nClipped, thresClip, nIterClip,
3424                              getResidual);
[2767]3425}
3426
[2773]3427std::vector<std::vector<double> > Scantable::getPolynomialModel(int order, int nchan, double (Scantable::*pfunc)(int, double))
[2767]3428{
[2773]3429  // model  : contains model values for computing the least-square matrix.
3430  //          model.size() is nmodel and model[*].size() is nchan.
3431  //          Each model element are as follows:
3432  //
3433  //          (for normal polynomials)
3434  //          model[0]   = {1.0,   1.0,   1.0,   ..., 1.0},
3435  //          model[1]   = {0.0,   1.0,   2.0,   ..., (nchan-1)}
3436  //          model[n-1] = ...,
3437  //          model[n]   = {0.0^n, 1.0^n, 2.0^n, ..., (nchan-1)^n}
3438  //          where (0 <= n <= order)
3439  //
3440  //          (for Chebyshev polynomials)
3441  //          model[0]   = {T0(-1), T0(2/(nchan-1)-1), T0(4/(nchan-1)-1), ..., T0(1)},
3442  //          model[n-1] = ...,
3443  //          model[n]   = {Tn(-1), Tn(2/(nchan-1)-1), Tn(4/(nchan-1)-1), ..., Tn(1)}
3444  //          where (0 <= n <= order),
3445
3446  int nmodel = order + 1;
3447  std::vector<std::vector<double> > model(nmodel, std::vector<double>(nchan));
3448
3449  double stretch, shift;
3450  if (pfunc == &Scantable::getChebyshevPolynomial) {
3451    stretch = 2.0/(double)(nchan - 1);
3452    shift   = -1.0;
3453  } else {
3454    stretch = 1.0;
3455    shift   = 0.0;
[2645]3456  }
[2773]3457
3458  for (int i = 0; i < nmodel; ++i) {
3459    for (int j = 0; j < nchan; ++j) {
3460      model[i][j] = (this->*pfunc)(i, stretch*(double)j + shift);
3461    }
[2645]3462  }
3463
[2773]3464  return model;
3465}
3466
3467std::vector<std::vector<std::vector<double> > > Scantable::getPolynomialModelReservoir(int order,
3468                                                                                       double (Scantable::*pfunc)(int, double),
3469                                                                                       std::vector<int>& nChanNos)
3470{
3471  std::vector<std::vector<std::vector<double> > > res;
3472  res.clear();
3473  nChanNos.clear();
3474
3475  std::vector<uint> ifNos = getIFNos();
3476  for (uint i = 0; i < ifNos.size(); ++i) {
3477    int currNchan = nchan(ifNos[i]);
3478    bool hasDifferentNchan = (i == 0);
3479    for (uint j = 0; j < i; ++j) {
3480      if (currNchan != nchan(ifNos[j])) {
3481        hasDifferentNchan = true;
3482        break;
3483      }
3484    }
3485    if (hasDifferentNchan) {
3486      res.push_back(getPolynomialModel(order, currNchan, pfunc));
3487      nChanNos.push_back(currNchan);
3488    }
3489  }
3490
3491  return res;
3492}
3493
3494std::vector<float> Scantable::doLeastSquareFitting(const std::vector<float>& data,
3495                                                   const std::vector<bool>& mask,
3496                                                   const std::vector<std::vector<double> >& model,
3497                                                   std::vector<float>& params,
3498                                                   float& rms,
3499                                                   std::vector<bool>& finalMask,
3500                                                   int& nClipped,
3501                                                   float thresClip,
3502                                                   int nIterClip,
3503                                                   bool getResidual)
3504{
3505  int nDOF = model.size();
[2645]3506  int nChan = data.size();
[2737]3507
[2773]3508  if (nDOF == 0) {
3509    throw(AipsError("no model data given"));
3510  }
3511  if (nChan < 2) {
3512    throw(AipsError("data size is too few"));
3513  }
3514  if (nChan != (int)mask.size()) {
3515    throw(AipsError("data and mask sizes are not identical"));
3516  }
3517  for (int i = 0; i < nDOF; ++i) {
3518    if (nChan != (int)model[i].size()) {
3519      throw(AipsError("data and model sizes are not identical"));
3520    }
3521  }
3522
3523  params.clear();
3524  params.resize(nDOF);
3525
[2737]3526  finalMask.clear();
3527  finalMask.resize(nChan);
3528
[2773]3529  std::vector<int> maskArray(nChan);
3530  int j = 0;
[2645]3531  for (int i = 0; i < nChan; ++i) {
[2773]3532    maskArray[i] = mask[i] ? 1 : 0;
[2645]3533    if (mask[i]) {
[2773]3534      j++;
[2645]3535    }
[2737]3536    finalMask[i] = mask[i];
[2645]3537  }
3538
[2773]3539  int initNData = j;
[2645]3540  int nData = initNData;
3541
[2773]3542  std::vector<double> z1(nChan), r1(nChan), residual(nChan);
[2645]3543  for (int i = 0; i < nChan; ++i) {
[2773]3544    z1[i] = (double)data[i];
3545    r1[i] = 0.0;
3546    residual[i] = 0.0;
[2645]3547  }
3548
3549  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
3550    // xMatrix : horizontal concatenation of
3551    //           the least-sq. matrix (left) and an
3552    //           identity matrix (right).
3553    // the right part is used to calculate the inverse matrix of the left part.
3554    double xMatrix[nDOF][2*nDOF];
3555    double zMatrix[nDOF];
3556    for (int i = 0; i < nDOF; ++i) {
3557      for (int j = 0; j < 2*nDOF; ++j) {
3558        xMatrix[i][j] = 0.0;
3559      }
3560      xMatrix[i][nDOF+i] = 1.0;
3561      zMatrix[i] = 0.0;
3562    }
3563
3564    int nUseData = 0;
3565    for (int k = 0; k < nChan; ++k) {
3566      if (maskArray[k] == 0) continue;
3567
3568      for (int i = 0; i < nDOF; ++i) {
3569        for (int j = i; j < nDOF; ++j) {
[2773]3570          xMatrix[i][j] += model[i][k] * model[j][k];
[2645]3571        }
[2773]3572        zMatrix[i] += z1[k] * model[i][k];
[2645]3573      }
3574
3575      nUseData++;
3576    }
3577
3578    if (nUseData < 1) {
3579        throw(AipsError("all channels clipped or masked. can't execute fitting anymore."));     
3580    }
3581
3582    for (int i = 0; i < nDOF; ++i) {
3583      for (int j = 0; j < i; ++j) {
3584        xMatrix[i][j] = xMatrix[j][i];
3585      }
3586    }
3587
[2773]3588    std::vector<double> invDiag(nDOF);
[2645]3589    for (int i = 0; i < nDOF; ++i) {
[2773]3590      invDiag[i] = 1.0 / xMatrix[i][i];
[2645]3591      for (int j = 0; j < nDOF; ++j) {
3592        xMatrix[i][j] *= invDiag[i];
3593      }
3594    }
3595
3596    for (int k = 0; k < nDOF; ++k) {
3597      for (int i = 0; i < nDOF; ++i) {
3598        if (i != k) {
3599          double factor1 = xMatrix[k][k];
[2773]3600          double invfactor1 = 1.0 / factor1;
[2645]3601          double factor2 = xMatrix[i][k];
3602          for (int j = k; j < 2*nDOF; ++j) {
3603            xMatrix[i][j] *= factor1;
3604            xMatrix[i][j] -= xMatrix[k][j]*factor2;
[2773]3605            xMatrix[i][j] *= invfactor1;
[2645]3606          }
3607        }
3608      }
[2773]3609      double invXDiag = 1.0 / xMatrix[k][k];
[2645]3610      for (int j = k; j < 2*nDOF; ++j) {
[2773]3611        xMatrix[k][j] *= invXDiag;
[2645]3612      }
3613    }
3614   
3615    for (int i = 0; i < nDOF; ++i) {
3616      for (int j = 0; j < nDOF; ++j) {
3617        xMatrix[i][nDOF+j] *= invDiag[j];
3618      }
3619    }
[2773]3620    //compute a vector y in which coefficients of the best-fit
3621    //model functions are stored.
3622    //in case of polynomials, y consists of (a0,a1,a2,...)
3623    //where ai is the coefficient of the term x^i.
3624    //in case of sinusoids, y consists of (a0,s1,c1,s2,c2,...)
3625    //where a0 is constant term and s* and c* are of sine
3626    //and cosine functions, respectively.
3627    std::vector<double> y(nDOF);
[2645]3628    for (int i = 0; i < nDOF; ++i) {
[2773]3629      y[i] = 0.0;
[2645]3630      for (int j = 0; j < nDOF; ++j) {
3631        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
3632      }
[2773]3633      params[i] = (float)y[i];
[2645]3634    }
3635
3636    for (int i = 0; i < nChan; ++i) {
3637      r1[i] = y[0];
3638      for (int j = 1; j < nDOF; ++j) {
[2773]3639        r1[i] += y[j]*model[j][i];
[2645]3640      }
3641      residual[i] = z1[i] - r1[i];
3642    }
3643
[2737]3644    double stdDev = 0.0;
3645    for (int i = 0; i < nChan; ++i) {
3646      stdDev += residual[i]*residual[i]*(double)maskArray[i];
3647    }
3648    stdDev = sqrt(stdDev/(double)nData);
3649    rms = (float)stdDev;
3650
[2645]3651    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
3652      break;
3653    } else {
[2737]3654
[2645]3655      double thres = stdDev * thresClip;
3656      int newNData = 0;
3657      for (int i = 0; i < nChan; ++i) {
3658        if (abs(residual[i]) >= thres) {
3659          maskArray[i] = 0;
[2737]3660          finalMask[i] = false;
[2645]3661        }
3662        if (maskArray[i] > 0) {
3663          newNData++;
3664        }
3665      }
3666      if (newNData == nData) {
3667        break; //no more flag to add. iteration stops.
3668      } else {
3669        nData = newNData;
3670      }
[2737]3671
[2645]3672    }
3673  }
3674
3675  nClipped = initNData - nData;
3676
[2773]3677  std::vector<float> result(nChan);
[2645]3678  if (getResidual) {
3679    for (int i = 0; i < nChan; ++i) {
[2773]3680      result[i] = (float)residual[i];
[2645]3681    }
3682  } else {
3683    for (int i = 0; i < nChan; ++i) {
[2773]3684      result[i] = (float)r1[i];
[2645]3685    }
3686  }
3687
3688  return result;
3689}
3690
[2773]3691void Scantable::cubicSplineBaseline(const std::vector<bool>& mask, int nPiece,
3692                                    float thresClip, int nIterClip,
3693                                    bool getResidual,
3694                                    const std::string& progressInfo,
3695                                    const bool outLogger, const std::string& blfile,
3696                                    const std::string& bltable)
[2081]3697{
[2774]3698  /****
[2773]3699  double TimeStart = mathutil::gettimeofday_sec();
[2774]3700  ****/
[2773]3701
[2193]3702  try {
3703    ofstream ofs;
[2773]3704    String coordInfo;
3705    bool hasSameNchan, outTextFile, csvFormat, showProgress;
[2193]3706    int minNRow;
[2344]3707    int nRow = nrow();
[2773]3708    std::vector<bool> chanMask, finalChanMask;
[2767]3709    float rms;
[2773]3710    bool outBaselineTable = (bltable != "");
3711    STBaselineTable bt = STBaselineTable(*this);
3712    Vector<Double> timeSecCol;
[2344]3713
[2773]3714    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3715                         coordInfo, hasSameNchan,
3716                         progressInfo, showProgress, minNRow,
3717                         timeSecCol);
[2767]3718
[2773]3719    std::vector<int> nChanNos;
3720    std::vector<std::vector<std::vector<double> > > modelReservoir;
3721    modelReservoir = getPolynomialModelReservoir(3,
3722                                                 &Scantable::getNormalPolynomial,
3723                                                 nChanNos);
[2767]3724
[2193]3725    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
[2591]3726      std::vector<float> sp = getSpectrum(whichrow);
[2193]3727      chanMask = getCompositeChanMask(whichrow, mask);
[2773]3728
3729      std::vector<int> pieceEdges;
3730      std::vector<float> params;
[2193]3731      int nClipped = 0;
[2773]3732      std::vector<float> res = doCubicSplineLeastSquareFitting(sp, chanMask,
3733                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3734                                   nPiece, false, pieceEdges, params, rms, finalChanMask,
3735                                   nClipped, thresClip, nIterClip, getResidual);
[2591]3736
[2773]3737      if (outBaselineTable) {
3738        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3739                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3740                      true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
3741                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3742                      thresClip, nIterClip, 0.0, 0, std::vector<int>());
[2767]3743      } else {
3744        setSpectrum(res, whichrow);
3745      }
[2591]3746
[2773]3747      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3748                          coordInfo, hasSameNchan, ofs, "cubicSplineBaseline()",
3749                          pieceEdges, params, nClipped);
[2193]3750      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
3751    }
[2344]3752   
[2773]3753    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
[2767]3754
[2193]3755  } catch (...) {
3756    throw;
[2012]3757  }
[2773]3758
[2774]3759  /****
[2773]3760  double TimeEnd = mathutil::gettimeofday_sec();
3761  double elapse1 = TimeEnd - TimeStart;
3762  std::cout << "cspline-new   : " << elapse1 << " (sec.)" << endl;
[2774]3763  ****/
[2012]3764}
3765
[2773]3766void Scantable::autoCubicSplineBaseline(const std::vector<bool>& mask, int nPiece,
3767                                        float thresClip, int nIterClip,
3768                                        const std::vector<int>& edge,
3769                                        float threshold, int chanAvgLimit,
3770                                        bool getResidual,
3771                                        const std::string& progressInfo,
3772                                        const bool outLogger, const std::string& blfile,
3773                                        const std::string& bltable)
[2012]3774{
[2193]3775  try {
3776    ofstream ofs;
[2773]3777    String coordInfo;
3778    bool hasSameNchan, outTextFile, csvFormat, showProgress;
[2767]3779    int minNRow;
3780    int nRow = nrow();
[2773]3781    std::vector<bool> chanMask, finalChanMask;
[2767]3782    float rms;
[2773]3783    bool outBaselineTable = (bltable != "");
3784    STBaselineTable bt = STBaselineTable(*this);
3785    Vector<Double> timeSecCol;
3786    STLineFinder lineFinder = STLineFinder();
[2189]3787
[2773]3788    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
3789                         coordInfo, hasSameNchan,
3790                         progressInfo, showProgress, minNRow,
3791                         timeSecCol);
[2767]3792
[2773]3793    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
3794
3795    std::vector<int> nChanNos;
3796    std::vector<std::vector<std::vector<double> > > modelReservoir;
3797    modelReservoir = getPolynomialModelReservoir(3,
3798                                                 &Scantable::getNormalPolynomial,
3799                                                 nChanNos);
3800
[2193]3801    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
[2591]3802      std::vector<float> sp = getSpectrum(whichrow);
[2193]3803      std::vector<int> currentEdge;
[2773]3804      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
[2193]3805
[2773]3806      std::vector<int> pieceEdges;
3807      std::vector<float> params;
[2193]3808      int nClipped = 0;
[2773]3809      std::vector<float> res = doCubicSplineLeastSquareFitting(sp, chanMask,
3810                                   modelReservoir[getIdxOfNchan(sp.size(), nChanNos)],
3811                                   nPiece, false, pieceEdges, params, rms, finalChanMask,
3812                                   nClipped, thresClip, nIterClip, getResidual);
[2193]3813
[2773]3814      if (outBaselineTable) {
3815        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
3816                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
3817                      true, STBaselineFunc::CSpline, pieceEdges, std::vector<float>(),
3818                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
3819                      thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
[2767]3820      } else {
3821        setSpectrum(res, whichrow);
3822      }
3823
[2773]3824      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
3825                          coordInfo, hasSameNchan, ofs, "autoCubicSplineBaseline()",
3826                          pieceEdges, params, nClipped);
[2193]3827      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
[1907]3828    }
[2012]3829
[2773]3830    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
[2767]3831
[2193]3832  } catch (...) {
3833    throw;
[2012]3834  }
[1730]3835}
[1907]3836
[2773]3837std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
3838                                                   const std::vector<bool>& mask,
3839                                                   std::vector<int>& idxEdge,
3840                                                   std::vector<float>& params,
3841                                                   float& rms,
3842                                                   std::vector<bool>& finalmask,
3843                                                   float clipth,
3844                                                   int clipn)
[2081]3845{
[2767]3846  int nClipped = 0;
3847  return doCubicSplineFitting(data, mask, idxEdge.size()-1, true, idxEdge, params, rms, finalmask, nClipped, clipth, clipn);
3848}
3849
[2773]3850std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
3851                                                   const std::vector<bool>& mask,
3852                                                   int nPiece,
3853                                                   std::vector<int>& idxEdge,
3854                                                   std::vector<float>& params,
3855                                                   float& rms,
3856                                                   std::vector<bool>& finalmask,
3857                                                   float clipth,
3858                                                   int clipn)
[2767]3859{
3860  int nClipped = 0;
3861  return doCubicSplineFitting(data, mask, nPiece, false, idxEdge, params, rms, finalmask, nClipped, clipth, clipn);
3862}
3863
[2773]3864std::vector<float> Scantable::doCubicSplineFitting(const std::vector<float>& data,
3865                                                   const std::vector<bool>& mask,
3866                                                   int nPiece,
3867                                                   bool useGivenPieceBoundary,
3868                                                   std::vector<int>& idxEdge,
3869                                                   std::vector<float>& params,
3870                                                   float& rms,
3871                                                   std::vector<bool>& finalMask,
3872                                                   int& nClipped,
3873                                                   float thresClip,
3874                                                   int nIterClip,
3875                                                   bool getResidual)
[2767]3876{
[2773]3877  return doCubicSplineLeastSquareFitting(data, mask,
3878                                         getPolynomialModel(3, data.size(), &Scantable::getNormalPolynomial),
3879                                         nPiece, useGivenPieceBoundary, idxEdge,
3880                                         params, rms, finalMask,
3881                                         nClipped, thresClip, nIterClip,
3882                                         getResidual);
3883}
3884
3885std::vector<float> Scantable::doCubicSplineLeastSquareFitting(const std::vector<float>& data,
3886                                                              const std::vector<bool>& mask,
3887                                                              const std::vector<std::vector<double> >& model,
3888                                                              int nPiece,
3889                                                              bool useGivenPieceBoundary,
3890                                                              std::vector<int>& idxEdge,
3891                                                              std::vector<float>& params,
3892                                                              float& rms,
3893                                                              std::vector<bool>& finalMask,
3894                                                              int& nClipped,
3895                                                              float thresClip,
3896                                                              int nIterClip,
3897                                                              bool getResidual)
3898{
3899  int nDOF = nPiece + 3;  //number of independent parameters to solve, namely, 4+(nPiece-1).
3900  int nModel = model.size();
3901  int nChan = data.size();
3902
3903  if (nModel != 4) {
3904    throw(AipsError("model size must be 4."));
[2081]3905  }
[2012]3906  if (nPiece < 1) {
[2094]3907    throw(AipsError("number of the sections must be one or more"));
[2012]3908  }
[2773]3909  if (nChan < 2*nPiece) {
3910    throw(AipsError("data size is too few"));
3911  }
3912  if (nChan != (int)mask.size()) {
3913    throw(AipsError("data and mask sizes are not identical"));
3914  }
3915  for (int i = 0; i < nModel; ++i) {
3916    if (nChan != (int)model[i].size()) {
3917      throw(AipsError("data and model sizes are not identical"));
3918    }
3919  }
[2012]3920
[2773]3921  params.clear();
3922  params.resize(nPiece*nModel);
[2767]3923
3924  finalMask.clear();
3925  finalMask.resize(nChan);
3926
[2344]3927  std::vector<int> maskArray(nChan);
3928  std::vector<int> x(nChan);
3929  int j = 0;
[2012]3930  for (int i = 0; i < nChan; ++i) {
[2344]3931    maskArray[i] = mask[i] ? 1 : 0;
[2012]3932    if (mask[i]) {
[2344]3933      x[j] = i;
3934      j++;
[2012]3935    }
[2767]3936    finalMask[i] = mask[i];
[2012]3937  }
[2773]3938
[2344]3939  int initNData = j;
[2773]3940  int nData = initNData;
[2012]3941
[2193]3942  if (initNData < nPiece) {
3943    throw(AipsError("too few non-flagged channels"));
3944  }
[2081]3945
3946  int nElement = (int)(floor(floor((double)(initNData/nPiece))+0.5));
[2344]3947  std::vector<double> invEdge(nPiece-1);
[2767]3948
3949  if (useGivenPieceBoundary) {
3950    if ((int)idxEdge.size() != nPiece+1) {
3951      throw(AipsError("pieceEdge.size() must be equal to nPiece+1."));
3952    }
3953  } else {
3954    idxEdge.clear();
3955    idxEdge.resize(nPiece+1);
3956    idxEdge[0] = x[0];
3957  }
[2012]3958  for (int i = 1; i < nPiece; ++i) {
[2047]3959    int valX = x[nElement*i];
[2767]3960    if (!useGivenPieceBoundary) {
3961      idxEdge[i] = valX;
3962    }
[2344]3963    invEdge[i-1] = 1.0/(double)valX;
[2012]3964  }
[2767]3965  if (!useGivenPieceBoundary) {
3966    idxEdge[nPiece] = x[initNData-1]+1;
3967  }
[2064]3968
[2773]3969  std::vector<double> z1(nChan), r1(nChan), residual(nChan);
[2012]3970  for (int i = 0; i < nChan; ++i) {
[2773]3971    z1[i] = (double)data[i];
3972    r1[i] = 0.0;
[2344]3973    residual[i] = 0.0;
[2012]3974  }
3975
3976  for (int nClip = 0; nClip < nIterClip+1; ++nClip) {
[2064]3977    // xMatrix : horizontal concatenation of
3978    //           the least-sq. matrix (left) and an
3979    //           identity matrix (right).
3980    // the right part is used to calculate the inverse matrix of the left part.
[2767]3981
[2012]3982    double xMatrix[nDOF][2*nDOF];
3983    double zMatrix[nDOF];
3984    for (int i = 0; i < nDOF; ++i) {
3985      for (int j = 0; j < 2*nDOF; ++j) {
3986        xMatrix[i][j] = 0.0;
3987      }
3988      xMatrix[i][nDOF+i] = 1.0;
3989      zMatrix[i] = 0.0;
3990    }
3991
3992    for (int n = 0; n < nPiece; ++n) {
[2193]3993      int nUseDataInPiece = 0;
[2773]3994      for (int k = idxEdge[n]; k < idxEdge[n+1]; ++k) {
[2064]3995
[2773]3996        if (maskArray[k] == 0) continue;
[2064]3997
[2773]3998        for (int i = 0; i < nModel; ++i) {
3999          for (int j = i; j < nModel; ++j) {
4000            xMatrix[i][j] += model[i][k] * model[j][k];
4001          }
4002          zMatrix[i] += z1[k] * model[i][k];
4003        }
[2064]4004
[2773]4005        for (int i = 0; i < n; ++i) {
4006          double q = 1.0 - model[1][k]*invEdge[i];
[2012]4007          q = q*q*q;
[2773]4008          for (int j = 0; j < nModel; ++j) {
4009            xMatrix[j][i+nModel] += q * model[j][k];
4010          }
4011          for (int j = 0; j < i; ++j) {
4012            double r = 1.0 - model[1][k]*invEdge[j];
[2012]4013            r = r*r*r;
[2773]4014            xMatrix[j+nModel][i+nModel] += r*q;
[2012]4015          }
[2773]4016          xMatrix[i+nModel][i+nModel] += q*q;
4017          zMatrix[i+nModel] += q*z1[k];
[2012]4018        }
[2064]4019
[2193]4020        nUseDataInPiece++;
[2012]4021      }
[2193]4022
4023      if (nUseDataInPiece < 1) {
4024        std::vector<string> suffixOfPieceNumber(4);
4025        suffixOfPieceNumber[0] = "th";
4026        suffixOfPieceNumber[1] = "st";
4027        suffixOfPieceNumber[2] = "nd";
4028        suffixOfPieceNumber[3] = "rd";
4029        int idxNoDataPiece = (n % 10 <= 3) ? n : 0;
4030        ostringstream oss;
4031        oss << "all channels clipped or masked in " << n << suffixOfPieceNumber[idxNoDataPiece];
4032        oss << " piece of the spectrum. can't execute fitting anymore.";
4033        throw(AipsError(String(oss)));
4034      }
[2012]4035    }
4036
4037    for (int i = 0; i < nDOF; ++i) {
4038      for (int j = 0; j < i; ++j) {
4039        xMatrix[i][j] = xMatrix[j][i];
4040      }
4041    }
4042
[2344]4043    std::vector<double> invDiag(nDOF);
[2012]4044    for (int i = 0; i < nDOF; ++i) {
[2773]4045      invDiag[i] = 1.0 / xMatrix[i][i];
[2012]4046      for (int j = 0; j < nDOF; ++j) {
4047        xMatrix[i][j] *= invDiag[i];
4048      }
4049    }
4050
4051    for (int k = 0; k < nDOF; ++k) {
4052      for (int i = 0; i < nDOF; ++i) {
4053        if (i != k) {
4054          double factor1 = xMatrix[k][k];
[2773]4055          double invfactor1 = 1.0 / factor1;
[2012]4056          double factor2 = xMatrix[i][k];
4057          for (int j = k; j < 2*nDOF; ++j) {
4058            xMatrix[i][j] *= factor1;
4059            xMatrix[i][j] -= xMatrix[k][j]*factor2;
[2773]4060            xMatrix[i][j] *= invfactor1;
[2012]4061          }
4062        }
4063      }
[2773]4064      double invXDiag = 1.0 / xMatrix[k][k];
[2012]4065      for (int j = k; j < 2*nDOF; ++j) {
[2773]4066        xMatrix[k][j] *= invXDiag;
[2012]4067      }
4068    }
4069   
4070    for (int i = 0; i < nDOF; ++i) {
4071      for (int j = 0; j < nDOF; ++j) {
4072        xMatrix[i][nDOF+j] *= invDiag[j];
4073      }
4074    }
[2767]4075
[2012]4076    //compute a vector y which consists of the coefficients of the best-fit spline curves
4077    //(a0,a1,a2,a3(,b3,c3,...)), namely, the ones for the leftmost piece and the ones of
4078    //cubic terms for the other pieces (in case nPiece>1).
[2344]4079    std::vector<double> y(nDOF);
[2012]4080    for (int i = 0; i < nDOF; ++i) {
[2344]4081      y[i] = 0.0;
[2012]4082      for (int j = 0; j < nDOF; ++j) {
4083        y[i] += xMatrix[i][nDOF+j]*zMatrix[j];
4084      }
4085    }
4086
[2773]4087    std::vector<double> a(nModel);
4088    for (int i = 0; i < nModel; ++i) {
4089      a[i] = y[i];
4090    }
[2012]4091
[2344]4092    int j = 0;
[2012]4093    for (int n = 0; n < nPiece; ++n) {
[2064]4094      for (int i = idxEdge[n]; i < idxEdge[n+1]; ++i) {
[2773]4095        r1[i] = 0.0;
4096        for (int j = 0; j < nModel; ++j) {
4097          r1[i] += a[j] * model[j][i];
4098        }
[2012]4099      }
[2773]4100      for (int i = 0; i < nModel; ++i) {
4101        params[j+i] = a[i];
4102      }
4103      j += nModel;
[2012]4104
4105      if (n == nPiece-1) break;
4106
[2773]4107      double d = y[n+nModel];
[2064]4108      double iE = invEdge[n];
[2773]4109      a[0] +=       d;
4110      a[1] -= 3.0 * d * iE;
4111      a[2] += 3.0 * d * iE * iE;
4112      a[3] -=       d * iE * iE * iE;
[2012]4113    }
4114
[2344]4115    //subtract constant value for masked regions at the edge of spectrum
4116    if (idxEdge[0] > 0) {
4117      int n = idxEdge[0];
4118      for (int i = 0; i < idxEdge[0]; ++i) {
4119        //--cubic extrapolate--
4120        //r1[i] = params[0] + params[1]*x1[i] + params[2]*x2[i] + params[3]*x3[i];
4121        //--linear extrapolate--
4122        //r1[i] = (r1[n+1] - r1[n])/(x1[n+1] - x1[n])*(x1[i] - x1[n]) + r1[n];
4123        //--constant--
4124        r1[i] = r1[n];
4125      }
4126    }
[2767]4127
[2344]4128    if (idxEdge[nPiece] < nChan) {
4129      int n = idxEdge[nPiece]-1;
4130      for (int i = idxEdge[nPiece]; i < nChan; ++i) {
4131        //--cubic extrapolate--
4132        //int m = 4*(nPiece-1);
4133        //r1[i] = params[m] + params[m+1]*x1[i] + params[m+2]*x2[i] + params[m+3]*x3[i];
4134        //--linear extrapolate--
4135        //r1[i] = (r1[n-1] - r1[n])/(x1[n-1] - x1[n])*(x1[i] - x1[n]) + r1[n];
4136        //--constant--
4137        r1[i] = r1[n];
4138      }
4139    }
4140
4141    for (int i = 0; i < nChan; ++i) {
4142      residual[i] = z1[i] - r1[i];
4143    }
4144
[2767]4145    double stdDev = 0.0;
4146    for (int i = 0; i < nChan; ++i) {
4147      stdDev += residual[i]*residual[i]*(double)maskArray[i];
4148    }
4149    stdDev = sqrt(stdDev/(double)nData);
4150    rms = (float)stdDev;
4151
[2012]4152    if ((nClip == nIterClip) || (thresClip <= 0.0)) {
4153      break;
4154    } else {
4155     
4156      double thres = stdDev * thresClip;
4157      int newNData = 0;
4158      for (int i = 0; i < nChan; ++i) {
[2081]4159        if (abs(residual[i]) >= thres) {
[2012]4160          maskArray[i] = 0;
[2767]4161          finalMask[i] = false;
[2012]4162        }
4163        if (maskArray[i] > 0) {
4164          newNData++;
4165        }
4166      }
[2081]4167      if (newNData == nData) {
[2064]4168        break; //no more flag to add. iteration stops.
[2012]4169      } else {
[2081]4170        nData = newNData;
[2012]4171      }
[2767]4172
[2012]4173    }
4174  }
4175
[2193]4176  nClipped = initNData - nData;
4177
[2344]4178  std::vector<float> result(nChan);
[2058]4179  if (getResidual) {
4180    for (int i = 0; i < nChan; ++i) {
[2344]4181      result[i] = (float)residual[i];
[2058]4182    }
4183  } else {
4184    for (int i = 0; i < nChan; ++i) {
[2344]4185      result[i] = (float)r1[i];
[2058]4186    }
[2012]4187  }
4188
[2058]4189  return result;
[2012]4190}
4191
[2773]4192std::vector<int> Scantable::selectWaveNumbers(const std::vector<int>& addNWaves,
4193                                  const std::vector<int>& rejectNWaves)
[2081]4194{
[2773]4195  std::vector<bool> chanMask;
[2767]4196  std::string fftMethod;
4197  std::string fftThresh;
4198
[2773]4199  return selectWaveNumbers(0, chanMask, false, fftMethod, fftThresh, addNWaves, rejectNWaves);
4200}
4201
4202std::vector<int> Scantable::selectWaveNumbers(const int whichrow,
4203                                  const std::vector<bool>& chanMask,
4204                                  const bool applyFFT,
4205                                  const std::string& fftMethod,
4206                                  const std::string& fftThresh,
4207                                  const std::vector<int>& addNWaves,
4208                                  const std::vector<int>& rejectNWaves)
4209{
4210  std::vector<int> nWaves;
[2186]4211  nWaves.clear();
4212
4213  if (applyFFT) {
4214    string fftThAttr;
4215    float fftThSigma;
4216    int fftThTop;
[2773]4217    parseFFTThresholdInfo(fftThresh, fftThAttr, fftThSigma, fftThTop);
[2186]4218    doSelectWaveNumbers(whichrow, chanMask, fftMethod, fftThSigma, fftThTop, fftThAttr, nWaves);
4219  }
4220
[2411]4221  addAuxWaveNumbers(whichrow, addNWaves, rejectNWaves, nWaves);
[2773]4222
4223  return nWaves;
[2186]4224}
4225
[2773]4226int Scantable::getIdxOfNchan(const int nChan, const std::vector<int>& nChanNos)
4227{
4228  int idx = -1;
4229  for (uint i = 0; i < nChanNos.size(); ++i) {
4230    if (nChan == nChanNos[i]) {
4231      idx = i;
4232      break;
4233    }
4234  }
4235
4236  if (idx < 0) {
4237    throw(AipsError("nChan not found in nChhanNos."));
4238  }
4239
4240  return idx;
4241}
4242
[2767]4243void Scantable::parseFFTInfo(const std::string& fftInfo, bool& applyFFT, std::string& fftMethod, std::string& fftThresh)
4244{
4245  istringstream iss(fftInfo);
4246  std::string tmp;
4247  std::vector<string> res;
4248  while (getline(iss, tmp, ',')) {
4249    res.push_back(tmp);
4250  }
4251  if (res.size() < 3) {
4252    throw(AipsError("wrong value in 'fftinfo' parameter")) ;
4253  }
4254  applyFFT = (res[0] == "true");
4255  fftMethod = res[1];
4256  fftThresh = res[2];
4257}
4258
[2773]4259void Scantable::parseFFTThresholdInfo(const std::string& fftThresh, std::string& fftThAttr, float& fftThSigma, int& fftThTop)
[2186]4260{
4261  uInt idxSigma = fftThresh.find("sigma");
4262  uInt idxTop   = fftThresh.find("top");
4263
4264  if (idxSigma == fftThresh.size() - 5) {
4265    std::istringstream is(fftThresh.substr(0, fftThresh.size() - 5));
4266    is >> fftThSigma;
4267    fftThAttr = "sigma";
4268  } else if (idxTop == 0) {
4269    std::istringstream is(fftThresh.substr(3));
4270    is >> fftThTop;
4271    fftThAttr = "top";
4272  } else {
4273    bool isNumber = true;
4274    for (uInt i = 0; i < fftThresh.size()-1; ++i) {
4275      char ch = (fftThresh.substr(i, 1).c_str())[0];
4276      if (!(isdigit(ch) || (fftThresh.substr(i, 1) == "."))) {
4277        isNumber = false;
4278        break;
4279      }
4280    }
4281    if (isNumber) {
4282      std::istringstream is(fftThresh);
4283      is >> fftThSigma;
4284      fftThAttr = "sigma";
4285    } else {
4286      throw(AipsError("fftthresh has a wrong value"));
4287    }
4288  }
4289}
4290
4291void Scantable::doSelectWaveNumbers(const int whichrow, const std::vector<bool>& chanMask, const std::string& fftMethod, const float fftThSigma, const int fftThTop, const std::string& fftThAttr, std::vector<int>& nWaves)
4292{
4293  std::vector<float> fspec;
4294  if (fftMethod == "fft") {
4295    fspec = execFFT(whichrow, chanMask, false, true);
4296  //} else if (fftMethod == "lsp") {
4297  //  fspec = lombScarglePeriodogram(whichrow);
4298  }
4299
4300  if (fftThAttr == "sigma") {
4301    float mean  = 0.0;
4302    float mean2 = 0.0;
4303    for (uInt i = 0; i < fspec.size(); ++i) {
4304      mean  += fspec[i];
4305      mean2 += fspec[i]*fspec[i];
4306    }
4307    mean  /= float(fspec.size());
4308    mean2 /= float(fspec.size());
4309    float thres = mean + fftThSigma * float(sqrt(mean2 - mean*mean));
4310
4311    for (uInt i = 0; i < fspec.size(); ++i) {
4312      if (fspec[i] >= thres) {
4313        nWaves.push_back(i);
4314      }
4315    }
4316
4317  } else if (fftThAttr == "top") {
4318    for (int i = 0; i < fftThTop; ++i) {
4319      float max = 0.0;
4320      int maxIdx = 0;
4321      for (uInt j = 0; j < fspec.size(); ++j) {
4322        if (fspec[j] > max) {
4323          max = fspec[j];
4324          maxIdx = j;
4325        }
4326      }
4327      nWaves.push_back(maxIdx);
4328      fspec[maxIdx] = 0.0;
4329    }
4330
4331  }
4332
4333  if (nWaves.size() > 1) {
4334    sort(nWaves.begin(), nWaves.end());
4335  }
4336}
4337
[2411]4338void Scantable::addAuxWaveNumbers(const int whichrow, const std::vector<int>& addNWaves, const std::vector<int>& rejectNWaves, std::vector<int>& nWaves)
[2186]4339{
[2411]4340  std::vector<int> tempAddNWaves, tempRejectNWaves;
[2767]4341  tempAddNWaves.clear();
4342  tempRejectNWaves.clear();
4343
[2186]4344  for (uInt i = 0; i < addNWaves.size(); ++i) {
[2411]4345    tempAddNWaves.push_back(addNWaves[i]);
4346  }
4347  if ((tempAddNWaves.size() == 2) && (tempAddNWaves[1] == -999)) {
4348    setWaveNumberListUptoNyquistFreq(whichrow, tempAddNWaves);
4349  }
4350
4351  for (uInt i = 0; i < rejectNWaves.size(); ++i) {
4352    tempRejectNWaves.push_back(rejectNWaves[i]);
4353  }
4354  if ((tempRejectNWaves.size() == 2) && (tempRejectNWaves[1] == -999)) {
4355    setWaveNumberListUptoNyquistFreq(whichrow, tempRejectNWaves);
4356  }
4357
4358  for (uInt i = 0; i < tempAddNWaves.size(); ++i) {
[2186]4359    bool found = false;
4360    for (uInt j = 0; j < nWaves.size(); ++j) {
[2411]4361      if (nWaves[j] == tempAddNWaves[i]) {
[2186]4362        found = true;
4363        break;
4364      }
4365    }
[2411]4366    if (!found) nWaves.push_back(tempAddNWaves[i]);
[2186]4367  }
4368
[2411]4369  for (uInt i = 0; i < tempRejectNWaves.size(); ++i) {
[2186]4370    for (std::vector<int>::iterator j = nWaves.begin(); j != nWaves.end(); ) {
[2411]4371      if (*j == tempRejectNWaves[i]) {
[2186]4372        j = nWaves.erase(j);
4373      } else {
4374        ++j;
4375      }
4376    }
4377  }
4378
4379  if (nWaves.size() > 1) {
4380    sort(nWaves.begin(), nWaves.end());
4381    unique(nWaves.begin(), nWaves.end());
4382  }
4383}
4384
[2411]4385void Scantable::setWaveNumberListUptoNyquistFreq(const int whichrow, std::vector<int>& nWaves)
4386{
[2767]4387  int val = nWaves[0];
4388  int nyquistFreq = nchan(getIF(whichrow))/2+1;
4389  nWaves.clear();
4390  if (val > nyquistFreq) {  // for safety, at least nWaves contains a constant; CAS-3759
4391    nWaves.push_back(0);
[2411]4392  }
[2767]4393  while (val <= nyquistFreq) {
4394    nWaves.push_back(val);
4395    val++;
4396  }
[2411]4397}
4398
[2773]4399void Scantable::sinusoidBaseline(const std::vector<bool>& mask, const std::string& fftInfo,
4400                                 const std::vector<int>& addNWaves,
4401                                 const std::vector<int>& rejectNWaves,
4402                                 float thresClip, int nIterClip,
4403                                 bool getResidual,
4404                                 const std::string& progressInfo,
4405                                 const bool outLogger, const std::string& blfile,
4406                                 const std::string& bltable)
[2186]4407{
[2774]4408  /****
[2773]4409  double TimeStart = mathutil::gettimeofday_sec();
[2774]4410  ****/
[2773]4411
[2193]4412  try {
4413    ofstream ofs;
[2773]4414    String coordInfo;
4415    bool hasSameNchan, outTextFile, csvFormat, showProgress;
4416    int minNRow;
4417    int nRow = nrow();
4418    std::vector<bool> chanMask, finalChanMask;
4419    float rms;
4420    bool outBaselineTable = (bltable != "");
4421    STBaselineTable bt = STBaselineTable(*this);
4422    Vector<Double> timeSecCol;
[2012]4423
[2773]4424    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
4425                         coordInfo, hasSameNchan,
4426                         progressInfo, showProgress, minNRow,
4427                         timeSecCol);
[2012]4428
[2773]4429    bool applyFFT;
4430    std::string fftMethod, fftThresh;
4431    parseFFTInfo(fftInfo, applyFFT, fftMethod, fftThresh);
[2012]4432
[2193]4433    std::vector<int> nWaves;
[2773]4434    std::vector<int> nChanNos;
4435    std::vector<std::vector<std::vector<double> > > modelReservoir;
4436    if (!applyFFT) {
4437      nWaves = selectWaveNumbers(addNWaves, rejectNWaves);
4438      modelReservoir = getSinusoidModelReservoir(nWaves, nChanNos);
4439    }
[2012]4440
[2193]4441    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
[2767]4442      std::vector<float> sp = getSpectrum(whichrow);
[2193]4443      chanMask = getCompositeChanMask(whichrow, mask);
[2773]4444      std::vector<std::vector<double> > model;
4445      if (applyFFT) {
4446        nWaves = selectWaveNumbers(whichrow, chanMask, true, fftMethod, fftThresh,
4447                                   addNWaves, rejectNWaves);
4448        model = getSinusoidModel(nWaves, sp.size());
4449      } else {
4450        model = modelReservoir[getIdxOfNchan(sp.size(), nChanNos)];
4451      }
[2186]4452
[2767]4453      std::vector<float> params;
4454      int nClipped = 0;
[2773]4455      std::vector<float> res = doLeastSquareFitting(sp, chanMask, model,
4456                                   params, rms, finalChanMask,
4457                                   nClipped, thresClip, nIterClip, getResidual);
[2767]4458
[2773]4459      if (outBaselineTable) {
4460        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4461                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4462                      true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4463                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
4464                      thresClip, nIterClip, 0.0, 0, std::vector<int>());
[2767]4465      } else {
4466        setSpectrum(res, whichrow);
[2186]4467      }
[2193]4468
[2773]4469      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
4470                          coordInfo, hasSameNchan, ofs, "sinusoidBaseline()",
4471                          params, nClipped);
[2193]4472      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
[2186]4473    }
4474
[2773]4475    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
[2767]4476
[2193]4477  } catch (...) {
4478    throw;
[1931]4479  }
[2773]4480
[2774]4481  /****
[2773]4482  double TimeEnd = mathutil::gettimeofday_sec();
4483  double elapse1 = TimeEnd - TimeStart;
4484  std::cout << "sinusoid-old   : " << elapse1 << " (sec.)" << endl;
[2774]4485  ****/
[1907]4486}
4487
[2773]4488void Scantable::autoSinusoidBaseline(const std::vector<bool>& mask, const std::string& fftInfo,
4489                                     const std::vector<int>& addNWaves,
4490                                     const std::vector<int>& rejectNWaves,
4491                                     float thresClip, int nIterClip,
4492                                     const std::vector<int>& edge,
4493                                     float threshold, int chanAvgLimit,
4494                                     bool getResidual,
4495                                     const std::string& progressInfo,
4496                                     const bool outLogger, const std::string& blfile,
4497                                     const std::string& bltable)
[2012]4498{
[2193]4499  try {
4500    ofstream ofs;
[2773]4501    String coordInfo;
4502    bool hasSameNchan, outTextFile, csvFormat, showProgress;
4503    int minNRow;
4504    int nRow = nrow();
4505    std::vector<bool> chanMask, finalChanMask;
4506    float rms;
4507    bool outBaselineTable = (bltable != "");
4508    STBaselineTable bt = STBaselineTable(*this);
4509    Vector<Double> timeSecCol;
4510    STLineFinder lineFinder = STLineFinder();
[2012]4511
[2773]4512    initialiseBaselining(blfile, ofs, outLogger, outTextFile, csvFormat,
4513                         coordInfo, hasSameNchan,
4514                         progressInfo, showProgress, minNRow,
4515                         timeSecCol);
[2012]4516
[2773]4517    initLineFinder(edge, threshold, chanAvgLimit, lineFinder);
[2012]4518
[2773]4519    bool applyFFT;
4520    string fftMethod, fftThresh;
4521    parseFFTInfo(fftInfo, applyFFT, fftMethod, fftThresh);
[2012]4522
[2193]4523    std::vector<int> nWaves;
[2773]4524    std::vector<int> nChanNos;
4525    std::vector<std::vector<std::vector<double> > > modelReservoir;
4526    if (!applyFFT) {
4527      nWaves = selectWaveNumbers(addNWaves, rejectNWaves);
4528      modelReservoir = getSinusoidModelReservoir(nWaves, nChanNos);
4529    }
[2186]4530
[2193]4531    for (int whichrow = 0; whichrow < nRow; ++whichrow) {
[2767]4532      std::vector<float> sp = getSpectrum(whichrow);
[2193]4533      std::vector<int> currentEdge;
[2773]4534      chanMask = getCompositeChanMask(whichrow, mask, edge, currentEdge, lineFinder);
4535      std::vector<std::vector<double> > model;
4536      if (applyFFT) {
4537        nWaves = selectWaveNumbers(whichrow, chanMask, true, fftMethod, fftThresh,
4538                                   addNWaves, rejectNWaves);
4539        model = getSinusoidModel(nWaves, sp.size());
[2193]4540      } else {
[2773]4541        model = modelReservoir[getIdxOfNchan(sp.size(), nChanNos)];
[2012]4542      }
[2193]4543
4544      std::vector<float> params;
4545      int nClipped = 0;
[2773]4546      std::vector<float> res = doLeastSquareFitting(sp, chanMask, model,
4547                                   params, rms, finalChanMask,
4548                                   nClipped, thresClip, nIterClip, getResidual);
[2193]4549
[2773]4550      if (outBaselineTable) {
4551        bt.appenddata(getScan(whichrow), getCycle(whichrow), getBeam(whichrow),
4552                      getIF(whichrow), getPol(whichrow), 0, timeSecCol[whichrow],
4553                      true, STBaselineFunc::Sinusoid, nWaves, std::vector<float>(),
4554                      getMaskListFromMask(finalChanMask), params, rms, sp.size(),
4555                      thresClip, nIterClip, threshold, chanAvgLimit, currentEdge);
[2767]4556      } else {
4557        setSpectrum(res, whichrow);
4558      }
4559
[2773]4560      outputFittingResult(outLogger, outTextFile, csvFormat, chanMask, whichrow,
4561                          coordInfo, hasSameNchan, ofs, "autoSinusoidBaseline()",
4562                          params, nClipped);
[2193]4563      showProgressOnTerminal(whichrow, nRow, showProgress, minNRow);
[2012]4564    }
4565
[2773]4566    finaliseBaselining(outBaselineTable, &bt, bltable, outTextFile, ofs);
[2767]4567
[2193]4568  } catch (...) {
4569    throw;
[2047]4570  }
4571}
4572
[2773]4573std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data,
4574                                                const std::vector<bool>& mask,
4575                                                const std::vector<int>& waveNumbers,
4576                                                std::vector<float>& params,
4577                                                float& rms,
4578                                                std::vector<bool>& finalmask,
4579                                                float clipth,
4580                                                int clipn)
[2081]4581{
[2767]4582  int nClipped = 0;
4583  return doSinusoidFitting(data, mask, waveNumbers, params, rms, finalmask, nClipped, clipth, clipn);
4584}
4585
[2773]4586std::vector<float> Scantable::doSinusoidFitting(const std::vector<float>& data,
4587                                                const std::vector<bool>& mask,
4588                                                const std::vector<int>& waveNumbers,
4589                                                std::vector<float>& params,
4590                                                float& rms,
4591                                                std::vector<bool>& finalMask,
4592                                                int& nClipped,
4593                                                float thresClip,
4594                                                int nIterClip,
4595                                                bool getResidual)
[2767]4596{
[2773]4597  return doLeastSquareFitting(data, mask,
4598                              getSinusoidModel(waveNumbers, data.size()),
4599                              params, rms, finalMask,
4600                              nClipped, thresClip, nIterClip,
4601                              getResidual);
4602}
4603
4604std::vector<std::vector<std::vector<double> > > Scantable::getSinusoidModelReservoir(const std::vector<int>& waveNumbers,
4605                                                                                     std::vector<int>& nChanNos)
4606{
4607  std::vector<std::vector<std::vector<double> > > res;
4608  res.clear();
4609  nChanNos.clear();
4610
4611  std::vector<uint> ifNos = getIFNos();
4612  for (uint i = 0; i < ifNos.size(); ++i) {
4613    int currNchan = nchan(ifNos[i]);
4614    bool hasDifferentNchan = (i == 0);
4615    for (uint j = 0; j < i; ++j) {
4616      if (currNchan != nchan(ifNos[j])) {
4617        hasDifferentNchan = true;
4618        break;
4619      }
4620    }
4621    if (hasDifferentNchan) {
4622      res.push_back(getSinusoidModel(waveNumbers, currNchan));
4623      nChanNos.push_back(currNchan);
4624    }
[2047]4625  }
[2773]4626
4627  return res;
4628}
4629
4630std::vector<std::vector<double> > Scantable::getSinusoidModel(const std::vector<int>& waveNumbers, int nchan)
4631{
4632  // model  : contains elemental values for computing the least-square matrix.
4633  //          model.size() is nmodel and model[*].size() is nchan.
4634  //          Each model element are as follows:
4635  //          model[0]    = {1.0, 1.0, 1.0, ..., 1.0},
4636  //          model[2n-1] = {sin(nPI/L*x[0]), sin(nPI/L*x[1]), ..., sin(nPI/L*x[nchan])},
4637  //          model[2n]   = {cos(nPI/L*x[0]), cos(nPI/L*x[1]), ..., cos(nPI/L*x[nchan])},
4638  //          where (1 <= n <= nMaxWavesInSW),
4639  //          or,
4640  //          model[2n-1] = {sin(wn[n]PI/L*x[0]), sin(wn[n]PI/L*x[1]), ..., sin(wn[n]PI/L*x[nchan])},
4641  //          model[2n]   = {cos(wn[n]PI/L*x[0]), cos(wn[n]PI/L*x[1]), ..., cos(wn[n]PI/L*x[nchan])},
4642  //          where wn[n] denotes waveNumbers[n] (1 <= n <= waveNumbers.size()).
4643
[2081]4644  std::vector<int> nWaves;  // sorted and uniqued array of wave numbers
4645  nWaves.reserve(waveNumbers.size());
4646  copy(waveNumbers.begin(), waveNumbers.end(), back_inserter(nWaves));
4647  sort(nWaves.begin(), nWaves.end());
4648  std::vector<int>::iterator end_it = unique(nWaves.begin(), nWaves.end());
4649  nWaves.erase(end_it, nWaves.end());
4650
4651  int minNWaves = nWaves[0];
4652  if (minNWaves < 0) {
[2058]4653    throw(AipsError("wave number must be positive or zero (i.e. constant)"));
4654  }
[2081]4655  bool hasConstantTerm = (minNWaves == 0);
[2773]4656  int nmodel = nWaves.size() * 2 - (hasConstantTerm ? 1 : 0);  //number of parameters to solve.
[2047]4657
[2773]4658  std::vector<std::vector<double> > model(nmodel, std::vector<double>(nchan));
[2767]4659
[2773]4660  if (hasConstantTerm) {
4661    for (int j = 0; j < nchan; ++j) {
4662      model[0][j] = 1.0;
[2047]4663    }
4664  }
4665
[2081]4666  const double PI = 6.0 * asin(0.5); // PI (= 3.141592653...)
[2773]4667  double stretch0 = 2.0*PI/(double)(nchan-1);
[2081]4668
4669  for (uInt i = (hasConstantTerm ? 1 : 0); i < nWaves.size(); ++i) {
[2773]4670    int sidx = hasConstantTerm ? 2*i-1 : 2*i;
4671    int cidx = sidx + 1;
4672    double stretch = stretch0*(double)nWaves[i];
[2081]4673
[2773]4674    for (int j = 0; j < nchan; ++j) {
4675      model[sidx][j] = sin(stretch*(double)j);
4676      model[cidx][j] = cos(stretch*(double)j);
[2047]4677    }
[2012]4678  }
4679
[2773]4680  return model;
[2012]4681}
4682
[2773]4683std::vector<bool> Scantable::getCompositeChanMask(int whichrow,
4684                                                  const std::vector<bool>& inMask)
[2047]4685{
[2186]4686  std::vector<bool> mask = getMask(whichrow);
4687  uInt maskSize = mask.size();
[2410]4688  if (inMask.size() != 0) {
4689    if (maskSize != inMask.size()) {
4690      throw(AipsError("mask sizes are not the same."));
4691    }
4692    for (uInt i = 0; i < maskSize; ++i) {
4693      mask[i] = mask[i] && inMask[i];
4694    }
[2047]4695  }
4696
[2186]4697  return mask;
[2047]4698}
4699
[2773]4700std::vector<bool> Scantable::getCompositeChanMask(int whichrow,
4701                                                  const std::vector<bool>& inMask,
4702                                                  const std::vector<int>& edge,
4703                                                  std::vector<int>& currEdge,
4704                                                  STLineFinder& lineFinder)
[2047]4705{
[2773]4706  std::vector<uint> ifNos = getIFNos();
[2774]4707  if ((edge.size() > 2) && (edge.size() < ifNos.size()*2)) {
[2773]4708    throw(AipsError("Length of edge element info is less than that of IFs"));
[2047]4709  }
4710
[2774]4711  uint idx = 0;
4712  if (edge.size() > 2) {
4713    int ifVal = getIF(whichrow);
4714    bool foundIF = false;
4715    for (uint i = 0; i < ifNos.size(); ++i) {
4716      if (ifVal == (int)ifNos[i]) {
4717        idx = 2*i;
4718        foundIF = true;
4719        break;
4720      }
[2773]4721    }
[2774]4722    if (!foundIF) {
4723      throw(AipsError("bad IF number"));
4724    }
[2773]4725  }
4726
4727  currEdge.clear();
4728  currEdge.resize(2);
4729  currEdge[0] = edge[idx];
4730  currEdge[1] = edge[idx+1];
4731
[2047]4732  lineFinder.setData(getSpectrum(whichrow));
[2773]4733  lineFinder.findLines(getCompositeChanMask(whichrow, inMask), currEdge, whichrow);
[2047]4734
4735  return lineFinder.getMask();
4736}
4737
4738/* for cspline. will be merged once cspline is available in fitter (2011/3/10 WK) */
[2773]4739void Scantable::outputFittingResult(bool outLogger,
4740                                    bool outTextFile,
4741                                    bool csvFormat,
4742                                    const std::vector<bool>& chanMask,
4743                                    int whichrow,
4744                                    const casa::String& coordInfo,
4745                                    bool hasSameNchan,
4746                                    ofstream& ofs,
4747                                    const casa::String& funcName,
4748                                    const std::vector<int>& edge,
4749                                    const std::vector<float>& params,
4750                                    const int nClipped)
[2186]4751{
[2047]4752  if (outLogger || outTextFile) {
4753    float rms = getRms(chanMask, whichrow);
4754    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
[2081]4755    std::vector<bool> fixed;
4756    fixed.clear();
[2047]4757
4758    if (outLogger) {
4759      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
[2773]4760      ols << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped,
4761                                           masklist, whichrow, false, csvFormat) << LogIO::POST ;
[2047]4762    }
4763    if (outTextFile) {
[2773]4764      ofs << formatPiecewiseBaselineParams(edge, params, fixed, rms, nClipped,
4765                                           masklist, whichrow, true, csvFormat) << flush;
[2047]4766    }
4767  }
4768}
4769
[2773]4770/* for poly/chebyshev/sinusoid. */
4771void Scantable::outputFittingResult(bool outLogger,
4772                                    bool outTextFile,
4773                                    bool csvFormat,
4774                                    const std::vector<bool>& chanMask,
4775                                    int whichrow,
4776                                    const casa::String& coordInfo,
4777                                    bool hasSameNchan,
4778                                    ofstream& ofs,
4779                                    const casa::String& funcName,
4780                                    const std::vector<float>& params,
4781                                    const int nClipped)
[2186]4782{
[2047]4783  if (outLogger || outTextFile) {
4784    float rms = getRms(chanMask, whichrow);
4785    String masklist = getMaskRangeList(chanMask, whichrow, coordInfo, hasSameNchan);
[2081]4786    std::vector<bool> fixed;
4787    fixed.clear();
[2047]4788
4789    if (outLogger) {
4790      LogIO ols(LogOrigin("Scantable", funcName, WHERE));
[2773]4791      ols << formatBaselineParams(params, fixed, rms, nClipped,
4792                                  masklist, whichrow, false, csvFormat) << LogIO::POST ;
[2047]4793    }
4794    if (outTextFile) {
[2773]4795      ofs << formatBaselineParams(params, fixed, rms, nClipped,
4796                                  masklist, whichrow, true, csvFormat) << flush;
[2047]4797    }
4798  }
4799}
4800
[2189]4801void Scantable::parseProgressInfo(const std::string& progressInfo, bool& showProgress, int& minNRow)
[2186]4802{
[2189]4803  int idxDelimiter = progressInfo.find(",");
4804  if (idxDelimiter < 0) {
4805    throw(AipsError("wrong value in 'showprogress' parameter")) ;
4806  }
4807  showProgress = (progressInfo.substr(0, idxDelimiter) == "true");
4808  std::istringstream is(progressInfo.substr(idxDelimiter+1));
4809  is >> minNRow;
4810}
4811
4812void Scantable::showProgressOnTerminal(const int nProcessed, const int nTotal, const bool showProgress, const int nTotalThreshold)
4813{
4814  if (showProgress && (nTotal >= nTotalThreshold)) {
[2186]4815    int nInterval = int(floor(double(nTotal)/100.0));
4816    if (nInterval == 0) nInterval++;
4817
[2193]4818    if (nProcessed % nInterval == 0) {
[2189]4819      printf("\r");                          //go to the head of line
[2186]4820      printf("\x1b[31m\x1b[1m");             //set red color, highlighted
[2189]4821      printf("[%3d%%]", (int)(100.0*(double(nProcessed+1))/(double(nTotal))) );
4822      printf("\x1b[39m\x1b[0m");             //set default attributes
[2186]4823      fflush(NULL);
4824    }
[2193]4825
[2186]4826    if (nProcessed == nTotal - 1) {
4827      printf("\r\x1b[K");                    //clear
4828      fflush(NULL);
4829    }
[2193]4830
[2186]4831  }
4832}
4833
4834std::vector<float> Scantable::execFFT(const int whichrow, const std::vector<bool>& inMask, bool getRealImag, bool getAmplitudeOnly)
4835{
4836  std::vector<bool>  mask = getMask(whichrow);
4837
4838  if (inMask.size() > 0) {
4839    uInt maskSize = mask.size();
4840    if (maskSize != inMask.size()) {
4841      throw(AipsError("mask sizes are not the same."));
4842    }
4843    for (uInt i = 0; i < maskSize; ++i) {
4844      mask[i] = mask[i] && inMask[i];
4845    }
4846  }
4847
4848  Vector<Float> spec = getSpectrum(whichrow);
4849  mathutil::doZeroOrderInterpolation(spec, mask);
4850
4851  FFTServer<Float,Complex> ffts;
4852  Vector<Complex> fftres;
4853  ffts.fft0(fftres, spec);
4854
4855  std::vector<float> res;
4856  float norm = float(2.0/double(spec.size()));
4857
4858  if (getRealImag) {
4859    for (uInt i = 0; i < fftres.size(); ++i) {
4860      res.push_back(real(fftres[i])*norm);
4861      res.push_back(imag(fftres[i])*norm);
4862    }
4863  } else {
4864    for (uInt i = 0; i < fftres.size(); ++i) {
4865      res.push_back(abs(fftres[i])*norm);
4866      if (!getAmplitudeOnly) res.push_back(arg(fftres[i]));
4867    }
4868  }
4869
4870  return res;
4871}
4872
4873
4874float Scantable::getRms(const std::vector<bool>& mask, int whichrow)
4875{
[2591]4876  /****
[2737]4877  double ms1TimeStart, ms1TimeEnd;
[2591]4878  double elapse1 = 0.0;
4879  ms1TimeStart = mathutil::gettimeofday_sec();
4880  ****/
4881
[2012]4882  Vector<Float> spec;
4883  specCol_.get(whichrow, spec);
4884
[2591]4885  /****
4886  ms1TimeEnd = mathutil::gettimeofday_sec();
4887  elapse1 = ms1TimeEnd - ms1TimeStart;
4888  std::cout << "rm1   : " << elapse1 << " (sec.)" << endl;
4889  ****/
4890
[2737]4891  return (float)doGetRms(mask, spec);
4892}
4893
4894double Scantable::doGetRms(const std::vector<bool>& mask, const Vector<Float>& spec)
4895{
4896  double mean = 0.0;
4897  double smean = 0.0;
[2012]4898  int n = 0;
[2047]4899  for (uInt i = 0; i < spec.nelements(); ++i) {
[2012]4900    if (mask[i]) {
[2737]4901      double val = (double)spec[i];
4902      mean += val;
4903      smean += val*val;
[2012]4904      n++;
4905    }
4906  }
4907
[2737]4908  mean /= (double)n;
4909  smean /= (double)n;
[2012]4910
4911  return sqrt(smean - mean*mean);
4912}
4913
[2641]4914std::string Scantable::formatBaselineParamsHeader(int whichrow, const std::string& masklist, bool verbose, bool csvformat) const
[2012]4915{
[2641]4916  if (verbose) {
4917    ostringstream oss;
[2012]4918
[2641]4919    if (csvformat) {
4920      oss << getScan(whichrow)  << ",";
4921      oss << getBeam(whichrow)  << ",";
4922      oss << getIF(whichrow)    << ",";
4923      oss << getPol(whichrow)   << ",";
4924      oss << getCycle(whichrow) << ",";
4925      String commaReplacedMasklist = masklist;
4926      string::size_type pos = 0;
4927      while (pos = commaReplacedMasklist.find(","), pos != string::npos) {
4928        commaReplacedMasklist.replace(pos, 1, ";");
4929        pos++;
4930      }
4931      oss << commaReplacedMasklist << ",";
4932    } else {
4933      oss <<  " Scan[" << getScan(whichrow)  << "]";
4934      oss <<  " Beam[" << getBeam(whichrow)  << "]";
4935      oss <<    " IF[" << getIF(whichrow)    << "]";
4936      oss <<   " Pol[" << getPol(whichrow)   << "]";
4937      oss << " Cycle[" << getCycle(whichrow) << "]: " << endl;
4938      oss << "Fitter range = " << masklist << endl;
4939      oss << "Baseline parameters" << endl;
4940    }
[2012]4941    oss << flush;
[2641]4942
4943    return String(oss);
[2012]4944  }
4945
[2641]4946  return "";
[2012]4947}
4948
[2641]4949std::string Scantable::formatBaselineParamsFooter(float rms, int nClipped, bool verbose, bool csvformat) const
[2012]4950{
[2641]4951  if (verbose) {
4952    ostringstream oss;
[2012]4953
[2641]4954    if (csvformat) {
4955      oss << rms << ",";
4956      if (nClipped >= 0) {
4957        oss << nClipped;
4958      }
4959    } else {
4960      oss << "Results of baseline fit" << endl;
4961      oss << "  rms = " << setprecision(6) << rms << endl;
4962      if (nClipped >= 0) {
4963        oss << "  Number of clipped channels = " << nClipped << endl;
4964      }
4965      for (int i = 0; i < 60; ++i) {
4966        oss << "-";
4967      }
[2193]4968    }
[2131]4969    oss << endl;
[2094]4970    oss << flush;
[2641]4971
4972    return String(oss);
[2012]4973  }
4974
[2641]4975  return "";
[2012]4976}
4977
[2186]4978std::string Scantable::formatBaselineParams(const std::vector<float>& params,
4979                                            const std::vector<bool>& fixed,
4980                                            float rms,
[2193]4981                                            int nClipped,
[2186]4982                                            const std::string& masklist,
4983                                            int whichrow,
4984                                            bool verbose,
[2641]4985                                            bool csvformat,
[2186]4986                                            int start, int count,
4987                                            bool resetparamid) const
[2047]4988{
[2064]4989  int nParam = (int)(params.size());
[2047]4990
[2064]4991  if (nParam < 1) {
4992    return("  Not fitted");
4993  } else {
4994
4995    ostringstream oss;
[2641]4996    oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
[2064]4997
4998    if (start < 0) start = 0;
4999    if (count < 0) count = nParam;
5000    int end = start + count;
5001    if (end > nParam) end = nParam;
5002    int paramidoffset = (resetparamid) ? (-start) : 0;
5003
5004    for (int i = start; i < end; ++i) {
5005      if (i > start) {
[2047]5006        oss << ",";
5007      }
[2064]5008      std::string sFix = ((fixed.size() > 0) && (fixed[i]) && verbose) ? "(fixed)" : "";
[2641]5009      if (csvformat) {
5010        oss << params[i] << sFix;
5011      } else {
5012        oss << "  p" << (i+paramidoffset) << sFix << "= " << right << setw(13) << setprecision(6) << params[i];
5013      }
[2047]5014    }
[2064]5015
[2641]5016    if (csvformat) {
5017      oss << ",";
[2644]5018    } else {
5019      oss << endl;
[2641]5020    }
5021    oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
[2064]5022
5023    return String(oss);
[2047]5024  }
5025
5026}
5027
[2641]5028std::string Scantable::formatPiecewiseBaselineParams(const std::vector<int>& ranges, const std::vector<float>& params, const std::vector<bool>& fixed, float rms, int nClipped, const std::string& masklist, int whichrow, bool verbose, bool csvformat) const
[2012]5029{
[2064]5030  int nOutParam = (int)(params.size());
5031  int nPiece = (int)(ranges.size()) - 1;
[2012]5032
[2064]5033  if (nOutParam < 1) {
5034    return("  Not fitted");
5035  } else if (nPiece < 0) {
[2641]5036    return formatBaselineParams(params, fixed, rms, nClipped, masklist, whichrow, verbose, csvformat);
[2064]5037  } else if (nPiece < 1) {
5038    return("  Bad count of the piece edge info");
5039  } else if (nOutParam % nPiece != 0) {
5040    return("  Bad count of the output baseline parameters");
5041  } else {
5042
5043    int nParam = nOutParam / nPiece;
5044
5045    ostringstream oss;
[2641]5046    oss << formatBaselineParamsHeader(whichrow, masklist, verbose, csvformat);
[2064]5047
[2641]5048    if (csvformat) {
5049      for (int i = 0; i < nPiece; ++i) {
5050        oss << ranges[i] << "," << (ranges[i+1]-1) << ",";
5051        oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
5052      }
5053    } else {
5054      stringstream ss;
5055      ss << ranges[nPiece] << flush;
5056      int wRange = ss.str().size() * 2 + 5;
[2064]5057
[2641]5058      for (int i = 0; i < nPiece; ++i) {
5059        ss.str("");
5060        ss << "  [" << ranges[i] << "," << (ranges[i+1]-1) << "]";
5061        oss << left << setw(wRange) << ss.str();
5062        oss << formatBaselineParams(params, fixed, rms, 0, masklist, whichrow, false, csvformat, i*nParam, nParam, true);
[2644]5063        //oss << endl;
[2641]5064      }
[2012]5065    }
[2064]5066
[2641]5067    oss << formatBaselineParamsFooter(rms, nClipped, verbose, csvformat);
[2064]5068
5069    return String(oss);
[2012]5070  }
5071
5072}
5073
[2047]5074bool Scantable::hasSameNchanOverIFs()
[2012]5075{
[2047]5076  int nIF = nif(-1);
5077  int nCh;
5078  int totalPositiveNChan = 0;
5079  int nPositiveNChan = 0;
[2012]5080
[2047]5081  for (int i = 0; i < nIF; ++i) {
5082    nCh = nchan(i);
5083    if (nCh > 0) {
5084      totalPositiveNChan += nCh;
5085      nPositiveNChan++;
[2012]5086    }
5087  }
5088
[2047]5089  return (totalPositiveNChan == (nPositiveNChan * nchan(0)));
[2012]5090}
5091
[2047]5092std::string Scantable::getMaskRangeList(const std::vector<bool>& mask, int whichrow, const casa::String& coordInfo, bool hasSameNchan, bool verbose)
[2012]5093{
[2427]5094  if (mask.size() <= 0) {
5095    throw(AipsError("The mask elements should be > 0"));
[2012]5096  }
[2047]5097  int IF = getIF(whichrow);
5098  if (mask.size() != (uInt)nchan(IF)) {
[2012]5099    throw(AipsError("Number of channels in scantable != number of mask elements"));
5100  }
5101
[2047]5102  if (verbose) {
[2012]5103    LogIO logOs(LogOrigin("Scantable", "getMaskRangeList()", WHERE));
5104    logOs << LogIO::WARN << "The current mask window unit is " << coordInfo;
5105    if (!hasSameNchan) {
[2047]5106      logOs << endl << "This mask is only valid for IF=" << IF;
[2012]5107    }
5108    logOs << LogIO::POST;
5109  }
5110
5111  std::vector<double> abcissa = getAbcissa(whichrow);
[2047]5112  std::vector<int> edge = getMaskEdgeIndices(mask);
5113
[2012]5114  ostringstream oss;
5115  oss.setf(ios::fixed);
5116  oss << setprecision(1) << "[";
[2047]5117  for (uInt i = 0; i < edge.size(); i+=2) {
[2012]5118    if (i > 0) oss << ",";
[2047]5119    oss << "[" << (float)abcissa[edge[i]] << "," << (float)abcissa[edge[i+1]] << "]";
[2012]5120  }
5121  oss << "]" << flush;
5122
5123  return String(oss);
5124}
5125
[2047]5126std::vector<int> Scantable::getMaskEdgeIndices(const std::vector<bool>& mask)
[2012]5127{
[2427]5128  if (mask.size() <= 0) {
5129    throw(AipsError("The mask elements should be > 0"));
[2012]5130  }
5131
[2047]5132  std::vector<int> out, startIndices, endIndices;
5133  int maskSize = mask.size();
[2012]5134
[2047]5135  startIndices.clear();
5136  endIndices.clear();
5137
5138  if (mask[0]) {
5139    startIndices.push_back(0);
[2012]5140  }
[2047]5141  for (int i = 1; i < maskSize; ++i) {
5142    if ((!mask[i-1]) && mask[i]) {
5143      startIndices.push_back(i);
5144    } else if (mask[i-1] && (!mask[i])) {
5145      endIndices.push_back(i-1);
5146    }
[2012]5147  }
[2047]5148  if (mask[maskSize-1]) {
5149    endIndices.push_back(maskSize-1);
5150  }
[2012]5151
[2047]5152  if (startIndices.size() != endIndices.size()) {
5153    throw(AipsError("Inconsistent Mask Size: bad data?"));
5154  }
5155  for (uInt i = 0; i < startIndices.size(); ++i) {
5156    if (startIndices[i] > endIndices[i]) {
5157      throw(AipsError("Mask start index > mask end index"));
[2012]5158    }
5159  }
5160
[2047]5161  out.clear();
5162  for (uInt i = 0; i < startIndices.size(); ++i) {
5163    out.push_back(startIndices[i]);
5164    out.push_back(endIndices[i]);
5165  }
5166
[2012]5167  return out;
5168}
5169
[2161]5170vector<float> Scantable::getTsysSpectrum( int whichrow ) const
5171{
5172  Vector<Float> tsys( tsysCol_(whichrow) ) ;
5173  vector<float> stlTsys ;
5174  tsys.tovector( stlTsys ) ;
5175  return stlTsys ;
5176}
[2012]5177
[2591]5178vector<uint> Scantable::getMoleculeIdColumnData() const
5179{
5180  Vector<uInt> molIds(mmolidCol_.getColumn());
5181  vector<uint> res;
5182  molIds.tovector(res);
5183  return res;
5184}
[2012]5185
[2591]5186void Scantable::setMoleculeIdColumnData(const std::vector<uint>& molids)
5187{
5188  Vector<uInt> molIds(molids);
5189  Vector<uInt> arr(mmolidCol_.getColumn());
5190  if ( molIds.nelements() != arr.nelements() )
5191    throw AipsError("The input data size must be the number of rows.");
5192  mmolidCol_.putColumn(molIds);
[1907]5193}
[2591]5194
5195
[2789]5196void Scantable::dropXPol()
5197{
5198  if (npol() <= 2) {
5199    return;
5200  }
5201  if (!selector_.empty()) {
5202    throw AipsError("Can only operate with empty selection");
5203  }
5204  std::string taql = "SELECT FROM $1 WHERE POLNO IN [0,1]";
5205  Table tab = tableCommand(taql, table_);
5206  table_ = tab;
5207  table_.rwKeywordSet().define("nPol", Int(2));
5208  originalTable_ = table_;
5209  attach();
[2591]5210}
[2789]5211
5212}
[1819]5213//namespace asap
Note: See TracBrowser for help on using the repository browser.